河南省封丘市2024年数学九上开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果把分式中的、都扩大到10倍,那么分式的值( )
A.扩大10倍B.不变C.扩大20倍D.是原来的
2、(4分)要说明命题“若 > ,则 >”是假命题,能举的一个反例是( )
A.B.
C.D.
3、(4分)为了贯彻总书记提出的“精准扶贫”战略构想,铜仁市2017年共扶贫261800人,将261800用科学记数法表示为( )
A.2.618×105B.26.18×104C.0.2618×106D.2.618×106
4、(4分)将分式中的a,b都扩大2倍,则分式的值( )
A.不变B.也扩大2倍C.缩小二分之一D.不能确定
5、(4分)分式有意义,则的取值范围为( )
A.B.C.且D.为一切实数
6、(4分)下列各式:①,②,③,④中,最简二次根式有( )
A.1个B.2个C.3个D.4个
7、(4分)如图,平行四边形ABCD中,,点E为BC边中点,,则AE的长为 ( )
A.2cmB.3cmC.4cmD.6cm
8、(4分)将下列多项式分解因式,结果中不含因式x+1的是( )
A.x2−1 B.x2−2x+1 C.x(x−2)+(x−2) D.x2+2x+1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; …;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=_____.
10、(4分)△ABC 中,已知:∠C=90°,AB=17,BC=8,则 AC=_____.
11、(4分)若分式的值是0,则x的值为________.
12、(4分)如图,A、B两点分别位于一个池塘的两端,小聪想用绳子测量A、B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A、B的点C,找到AC、BC的中点D、E,并且测出DE的长为13m,则A、B间的距离为______m.
13、(4分)当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程
(1)+=3 (2)
15、(8分)如图,已知直线交轴于点,交轴于点,点,是直线上的一个动点.
(1)求点的坐标,并求当时点的坐标;
(2)如图,以为边在上方作正方形,请画出当正方形的另一顶点也落在直线上的图形,并求出此时点的坐标;
(3)当点在上运动时,点是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.
16、(8分)我国古代数学名著《孙子算经》中有这样一道有关于自然数的题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?”就是说:一个数被2除余2,被5除余2,被7除余2,求这个数.《孙子算经》的解决方法大体是这样的先求被2除余2,同时能被5,7都整除的数,最小为1.再求被5除余2.同时能被2,7都整除的数,最小为62.最后求被7除余2,同时能被2,5都整除的数,最小为20.于是数1+62+20=222.就是一个所求的数.那么它减去或加上2,5,7的最小公倍数105的倍数,比如222﹣105=128,222+105=288…也是符合要求的数,所以符合要求的数有无限个,最小的是22.我们定义,一个自然数,若满足被2除余1,被2除余2,被5除余2,则称这个数是“魅力数”.
(1)判断42是否是“魅力数”?请说明理由;
(2)求出不大于100的所有的“魅力数”.
17、(10分)关于的一元二次方程有两个不相等的实数根.
(1)求的取值范围;
(2)当取满足条件的最大整数时,求方程的根.
18、(10分)已知,如图,E、F分别为□ABCD的边BC、AD上的点,且∠1=∠2,.求证:AE=CF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,平行四边形ABCD中,点O是对角线AC的中点,点E在边AB上,连接DE,取DE的中点F,连接EO并延长交CD于点G.若BE=3CG,OF=2,则线段AE的长是_____.
20、(4分)如图,点是的对称中心, ,是边上的点,且是边上的点,且,若分别表示和的面积则.
21、(4分)如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.
22、(4分)从一副扑克牌中任意抽取 1 张:①这张牌是“A”;②这张牌是“红心”;③这张牌是“大王”.其中发生的可能性最大的事件是_____.(填序号)
23、(4分)已知一组数据为1,10,6,4,7,4,则这组数据的中位数为________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形ABCD,以点B为圆心,BA长为半径作圆弧,交对角线BD于点E,连结AE并延长交CD于点F,求证:DF=DE.
25、(10分)如图,在中,,,的垂直平分线分别交和于点、.求证:.
26、(12分)某商场计划购进一批自行车. 男式自行车价格为元/辆,女式自行车价格为元/辆,要求男式自行车比女式单车多辆,设购进女式自行车辆,购置总费用为元.
(1)求购置总费用(元)与女式单车(辆)之间的函数关系式;
(2)若两种自行车至少需要购置辆,且购置两种自行车的费用不超过元,该商场有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
利用分式的基本性质即可求出答案.
【详解】
用10x和10y代替式子中的x和y得:
原式=
=
∴分式的值扩大为原来的10倍.
选A.
本题考查了分式的基本性质。
2、D
【解析】
作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.
【详解】
解:A、a=3,b=2,满足a>b,且满足|a|>|b|,不能作为反例,故错误;
B、a=4,b=-1,满足a>b,且满足|a|>|b|,不能作为反例,故错误;
C、a=1,b=0;满足a>b,且满足|a|>|b|,不能作为反例,故错误;
D、a=-1,b=-2,满足a>b,但不满足|a|>|b|,∴a=-1,b=-2能作为证明原命题是假命题的反例,
故选:D.
本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.
3、A
【解析】
科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10)的记数法.
【详解】
解:261800=2.618×105.
故选A
本题考核知识点:科学记数法.解题关键点:理解科学记数法的定义.
4、B
【解析】
依题意,分别用2a和2b去代换原分式中的a和b,利用分式的基本性质化简即可.
【详解】
分别用2a和2b去代换原分式中的a和b,原式= =
可见新分式的值是原分式的2倍.
故选B.
此题考查分式的基本性质,解题关键在于分别用2a和2b去代换原分式中的a和b
5、B
【解析】
直接利用分式有意义则分母不等于零进而得出答案.
【详解】
分式有意义,
则x-1≠0,
解得:x≠1.
故选:B.
此题考查分式有意义的条件,正确把握分式的定义是解题关键.
6、A
【解析】
先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.
【详解】
解:①,②,③,④(y≥0),
故其中的最简二次根式为①,共一个.
故选:A.
本题考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.
7、B
【解析】
由平行四边形的性质得出BC=AD=6cm,由直角三角形斜边上的中线性质即可得出结果.
【详解】
解:∵四边形ABCD是平行四边形,
∴BC=AD=6cm,
∵E为BC的中点,AC⊥AB,
∴AE=BC=3cm,
故选:B.
本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.
8、B
【解析】
直接利用平方差公式以及完全平方公式分解因式,进而得出答案.
【详解】
A、x2-1=(x+1)(x-1),故此选项不合题意;
B、x2-2x+1=(x-1)2,故此选项符合题意;
C、x(x-2)+(x-2)=(x+1)(x-2),故此选项不合题意;
D、x2+2x+1=(x+1)2,故此选项不合题意;
故选B.
此题主要考查了公式法以及提公因式法分解因式,熟练应用乘法公式是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
利用角平分线的数量关系和外角的性质先得到∠A1与∠A的关系,同样的方法再得到∠A2和∠A1的关系,从而观察出其中的规律,得出结论.
【详解】
平分 ,
.
平分 ,
.
.
同理可得:
;
......
本题考察了三角形内角和外角平分线的综合应用及列代数式表示规律.
10、15
【解析】
根据勾股定理即可算出结果.
【详解】
在△ABC中,∠C=90°,AB=17,BC=8,
所以AC=
故答案为:15
本题考查了勾股定理,掌握勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方,是解题的关键.
11、3
【解析】
根据分式为0的条件解答即可,
【详解】
因为分式的值为0,
所以∣x∣-3=0且3+x≠0,
∣x∣-3=0,即x=3,
3+x≠0,即x≠-3,
所以x=3,
故答案为:3
本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.
12、1
【解析】
D、E是AC和BC的中点,则DE是△ABC的中位线,则依据三角形的中位线定理即可求解.
【详解】
解:∵D,E分别是AC,BC的中点,
∴AB=2DE=1m.
故答案为:1.
本题考查了三角形的中位线定理,正确理解定理是解题的关键.
13、21.
【解析】已知这组数据共5个,且中位数为4,所以第三个数是4;又因这组数据的唯一众数是6,可得6应该是4后面的两个数字,而前两个数字都小于4,且都不相等,所以前两个数字最大的时候是3,2,即可得其和为21,所以这组数据可能的最大的和为21.故答案为:21.
点睛:主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
三、解答题(本大题共5个小题,共48分)
14、 (1)x=;(2)x=1
【解析】
(1)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;
(2)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;
【详解】
(1)+=3
3-2=3(2x-2)
1=6x-6
x=,
当x=时,2x-2≠0,所以x=是方程的解;
(2)
x-3+2(x+3)=6
x-3+2x+6=6
3x=3
x=1.
当x=1时,x2-9≠0,所以x=1是方程的解.
考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
15、(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.
【解析】
(1)利用待定系数法求出A,B两点坐标,再构建方程即可解决问题.
(2)分两种情形:①如图1,当点F在直线上时,过点D作DG⊥x轴于点G,过点F作FH⊥x轴于点H,②如图2,当点E在直线上时,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,过点D作DM⊥EH于点M,分别求解即可解决问题.
(3)由(2)①可知:点F的坐标F(2m-7,m+3),令x=2m-7,y=m+3,消去m即可得到.
【详解】
解:(1)令,则,解得,,,
易得,
由得, ,解得,
由 解得或2.8,
∴D(1.2,1.6)或(2.8,-1.6).
(2)①如图1,当点在直线上时,过点作轴于点,过点作轴于点,
图1
设,易证
,,
则,
,
,得,
;
②如图2,当点在直线上时,过点作轴于点,过点作轴于点,
图2
过点作于点,
同①可得,,
则,,
,
得,
;
(3) 设D(m,-2m+4),由(2)①可知:F(2m-7,m+3),
令x=2m-7,y=m+3,消去m得到:
点在直线上运动.
故答案为:(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.
本题属于一次函数综合题,考查正方形的性质,三角形的面积,全等三角形的判定和性质,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
16、(1)49不是“魅力数”,理由详见解析;(9)99、59、89.
【解析】
(1)验证49是否满足“被9除余1,被9除余9,被5除余9”这三个条件,若全部满足,则为“魅力数”,若不全满足,则不是“魅力数”;
(9)根据样例,先求被9除余1,同时能被9,5都整除的数,最小为8.再求被9除余9.同时能被9,5都整除的数,最小为90.最后求被5除余9,同时能被9,9都整除的数,最小为11.于是数8+90+11=59,再用它减去或加上9,9,5的最小公倍数90的倍数得结果.
【详解】
解:(1)49不是“魅力数”.理由如下:
∵49=14×9+1,
∴49被9除余1,不余9,
∴根据“魅力数”的定义知,49不是“魅力数”;
(9)先求被9除余1,同时能被9,5都整除的数,最小为8.
再求被9除余9.同时能被9,5都整除的数,最小为90.
最后求被5除余9,同时能被9,9都整除的数,最小为11.
∴数8+90+11=59是“魅力数”,
∵9、9、5的最小公倍数为90,
∴59﹣90=99也是“魅力数”,
59+90=89也是“魅力数”,
故不大于100的所有的“魅力数”有99、59、89三个数.
本题考查了数学文化问题,读懂题意,明确定义是解题的关键.
17、(1)且;(2),
【解析】
(1)根据题意可得且,由此即可求得m的取值范围;(2)在(1)的条件下求得m的值,代入解方程即可.
【详解】
(1)关于的一元二次方程有两个不相等的实数根,
且.
解得且.
的取值范围是且.
(2)在且的范围内,最大整数为.
此时,方程化为.
解得,.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
18、详见解析
【解析】
通过证明三角形全等求得两线段相等即可.
【详解】
∵四边形ABCD为平行四边形
∴∠B=∠D,AB=CD
在△ABE与△CDF中,∠1=∠2,∠B=∠D,AB=CD
∴△ABE≌△CDF
∴AE=CF
本题主要考查平行四边形性质与全等三角形,解题关键在于找到全等三角形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
已知点O是对角线AC的中点,DE的中点为F,可得OF为△EDG的中位线,根据三角形的中位线定理可得DG=2OF=4;由平行四边形的性质可得AB∥CD,AB=CD,即可得∠EAO=∠GCO,再判定△AOE≌△COG,根据全等三角形的性质可得AE=CG,即可得BE=DG=4,再由BE=3CG即可求得AE=CG=.
【详解】
∵点O是对角线AC的中点,DE的中点为F,
∴OF为△EDG的中位线,
∴DG=2OF=4;
∵四边形ABCD为平行四边形,
∴AB∥CD,AB=CD,
∴∠EAO=∠GCO,
在△AOE和△COG中,
,
∴△AOE≌△COG,
∴AE=CG,
∵AB=CD,
∴BE=DG=4,
∵BE=3CG,
∴AE=CG=.
故答案为:.
本题考查了平行四边形的性质、三角形的中位线定理,利用三角形的中位线定理求得DG=4;是解决问题的关键.
20、
【解析】
根据同高的两个三角形面积之比等于底边之比得出再由点O是▱ABCD的对称中心,根据平行四边形的性质可得S△AOB=S△BOC= ,从而得出S1与S2之间的等量关系.
【详解】
解:由题意可得
∵点O是▱ABCD的对称中心,
∴S△AOB=S△BOC= ,
故答案为:
本题考查了中心对称,三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出是解题的关键.
21、8或1
【解析】
解:如图所示:①当AE=1,DE=2时,
∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,
∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,
∴平行四边形ABCD的周长=2(AB+AD)=8;
②当AE=2,DE=1时,同理得:AB=AE=2,
∴平行四边形ABCD的周长=2(AB+AD)=1;
故答案为8或1.
22、②
【解析】
根据可能性等于所求情况与总数情况之比即可解题.
【详解】
解:一副扑克一共有54张扑克牌,A一共有4张,∴这张牌是“A”的概率是 ,
这张牌是“红心”的概率是,
这张牌是“大王”的概率是,
∴其中发生的可能性最大的事件是②.
本题考查了简单的概率计算,属于简单题,熟悉概率公式是解题关键.
23、5.
【解析】
将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.
【详解】
解:将这组数据按从小到大的顺序排列是:1,4,4,6,7,10,位于最中是的两个数是4和6,因此中位数为(4+6)÷2=5.
故答案为5.
本题考查了中位数的含义及计算方法.
二、解答题(本大题共3个小题,共30分)
24、见解析.
【解析】
欲证明DE=DF,只要证明∠DEF=∠DFE.
【详解】
证明:由作图可知:BA=BE,
∴∠BAE=∠BEA,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAE=∠DFE,
∵∠AEB=∠DEF,
∴∠DEF=∠DFE,
∴DE=DF.
本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
25、详见解析
【解析】
连接BE,由垂直平分线的性质可求得∠EBC=∠ABE=∠A=30°,在Rt△BCE中,由直角三角形的性质可证得BE=2CE,则可证得结论.
【详解】
证明:连接,
为边为垂直平分线,
.
,,
,
,
在中,,
,
.
本题主要考查了含30°角的直角三角形的性质,线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
26、(1);(2)共种方案,购置男式自行车辆,女式自行车辆,费用最低,最低费用为元
【解析】
(1)根据题意即可列出总费用y(元)与女式单车x(辆)之间的函数关系式;
(2)根据题意列出不等式组,求出x的取值范围,再根据(1)的结论与一次函数的性质解答即可.
【详解】
解:(1)根据题意,得:
即
(2)由题意可得:
解得:
∵为整数
∴ ,,,, 共有种方案
由(1)得:
∵
∴y随得增大而增大
∴当时,y最小
故共种方案,购置男式自行车辆,女式自行车辆,费用最低,最低费用为元.
本题主要考查一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.
题号
一
二
三
四
五
总分
得分
河南省安阳市名校2024年九上数学开学质量检测模拟试题【含答案】: 这是一份河南省安阳市名校2024年九上数学开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河南省许昌长葛市九上数学开学检测模拟试题【含答案】: 这是一份2024年河南省许昌长葛市九上数学开学检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省恩平市九上数学开学质量检测模拟试题【含答案】: 这是一份2024年广东省恩平市九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。