河南省滑县2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)无论a取何值时,下列分式一定有意义的是( )
A.B.C.D.
2、(4分)如图,在的方格纸中,两点在格点上,线段绕某点逆时针旋转角后得到线段,点与对应,则角的大小为( )
A.B.C.D.
3、(4分)下列说法中正确的是( )
A.在中,.
B.在中,.
C.在中,,.
D.、、是的三边,若,则是直角三角形.
4、(4分)在平面直角坐标系中,点P(﹣3,2)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)下列命题中,正确的是( )
A.矩形的邻边不能相等B.菱形的对角线不能相等
C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直
6、(4分)已知反比例函数的图象过点M(-1,2),则此反比例函数的表达式为( )
A.y=B.y=-C.y=D.y=-
7、(4分)下列图形中,不属于中心对称图形的是( )
A.圆B.等边三角形C.平行四边形D.线段
8、(4分)已知、是一次函数图象上的两个点,则与的大小关系为( )
A.B.C.D.不能确定与的大小
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若方程组的解是,那么|a-b|= ______________.
10、(4分)一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.
11、(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.
12、(4分)如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k=_____,满足条件的P点坐标是_________________.
13、(4分)若点和点都在一次函数的图象上,则________(选择“”、“”、“”填空).
三、解答题(本大题共5个小题,共48分)
14、(12分)为加强防汛工作,市工程队准备对长江堤岸一段长为2560米的江堤进行加固,在加固了1000米后,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了50%,因而完成此段加固工程所需天数将比原计划缩短5天,那么现在每天加调的长度是多少米?
15、(8分)几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?
(1)方法1:如图①,连接四边形的对角线,,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD和之间的关系:_______________.
方法2:如图②,取四边形四边的中点,,,,连接,,,,
(2)求证:四边形是平行四边形;
(3)请直接写出S四边形ABCD与之间的关系:_____________.
方法3:如图③,取四边形四边的中点,,,,连接,交于点.先将四边形绕点旋转得到四边形,易得点,,在同一直线上;再将四边形绕点旋转得到四边形,易得点,,在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形;
(4)由旋转、平移可得_________,_________,所以,所以点,,在同一直线上,同理,点,,也在同一点线上,所以我们拼接成的图形是一个四边形.
(5)求证:四边形是平行四边形.
(注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)
(6)应用1:如图④,在四边形中,对角线与交于点,,,,则S四边形ABCD= .
(7)应用2:如图⑤,在四边形中,点,,,分别是,,,的中点,连接,交于点,,,,则S四边形ABCD=___________
16、(8分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?
17、(10分)某文具店准备购进甲、乙两种文具袋,已知甲文具袋每个的进价比乙每个进价多2元,经了解,用120元购进的甲文具袋与用90元购进的乙文具袋的数量相等.
(1)分别求甲、乙两种文具袋每个的进价是多少元?
(2)若该文具店用1200元全部购进甲、乙两种文具袋,设购进甲x个,乙y个.
①求y关于x的关系式.
②甲每个的售价为10元,乙每个的售价为9元,且在进货时,甲的购进数量不少于60个,若这批文具袋全部售完可获利w元,求w关于x的关系式,并说明如何进货该文具店所获利润最大,最大利润是多少?
18、(10分)(1)分解因式: x(a-b)+y(a-b)
(2)解分式方程:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直线不经过第一象限,则的取值范围是_____________。
20、(4分)如图,a∥b,∠1=110°,∠3=50°,则∠2的度数是_____.
21、(4分)已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为_________,频率为_________.
22、(4分)已知正方形的对角线为4,则它的边长为_____.
23、(4分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为_____cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校举行了“文明在我身边”摄影比赛,已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分步赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.
“文明在我身边”摄影比赛成绩统计表
根据以上信息解答下列问题:
(1)统计表中a= ,b= ,c= .
(2)补全数分布直方图;
(3)若80分以上的作品将被组织展评,试估计全校被展评作品数量是多少?
25、(10分)如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东,南,西,北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的,小路与观赏亭的面积之和占草坪面积的,求小路的宽.
26、(12分)解不等式组:,并把它的解集在数轴上表示出来.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题解析:当a=0时,a2=0,故A、B中分式无意义;
当a=-1时,a+1=0,故C中分式无意义;
无论a取何值时,a2+1≠0,
故选D.
考点:分式有意义的条件.
2、C
【解析】
如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.
【详解】
解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′
∠AOA′即为旋转角,
∴旋转角为90°
故选:C.
考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.
3、D
【解析】
根据勾股定理以及勾股定理的逆定理逐项分析即可.
【详解】
A.因为不一定是直角三角形,故不正确;
B.没说明哪个角是直角,故不正确;
C. 在中,,则,故不正确;
D.符合勾股定理的逆定理,故正确.
故选D.
本题考查了勾股定理,以及勾股定理逆定理,熟练掌握定理是解答本题的关键. 直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
4、B
【解析】
根据各象限的点的坐标的符号特征判断即可.
【详解】
∵-3<0,2>0,
∴点P(﹣3,2)在第二象限,
故选:B.
本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.
5、D
【解析】
根据矩形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据平行四边形的性质对D进行判断.
【详解】
A、矩形的邻边能相等,若相等,则矩形变为正方形,故A错误;
B、菱形的对角线不一定相等,若相等,则菱形变为正方形,故B错误;
C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,故C错误;
D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,故D正确.
故选D.
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.
6、B
【解析】
函数经过一定点,将此点坐标代入函数解析式y=(k≠0),即可求得k的值.
【详解】
设反比例函数的解析式为y=(k≠0).
∵该函数的图象过点M(−1,2),
∴2=,
得k=−2.
∴反比例函数解析式为y=-.故选B.
本题考查了待定系数法求反比例函数解析式,解题的关键是掌握待定系数法求反比例函数解析式的方法和步骤.
7、B
【解析】
试题分析:根据中心对称图形的概念求解.
解:A、是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项正确;
C、是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项错误.
故选B.
【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
8、C
【解析】
先根据一次函数中k=-1判断出函数的增减性,再根据-3<1进行解答即可.
【详解】
解:∵一次函数中k=-1<0,
∴y随x的增大而减小,
∵-3<1,
∴y1>y1.
故选:C.
本题考查一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
将代入中,得解得所以|a-b|=|1-2|=1.
10、1
【解析】
根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.
【详解】
如图,由题意知,AB=5,AC=6,
∴AO=OC=3,
∵菱形对角线互相垂直平分,
∴△ABO为直角三角形,
在Rt△ABO中,AB=5,AO=3,
∴BO==4,
故BD=2BO=1,
故答案为: 1.
本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.
11、
【解析】
根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度
【详解】
∵四边形ABCD是菱形,
∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,
∴BC==5cm,
∴S菱形ABCD==×6×8=24cm2,
∵S菱形ABCD=BC×AE,
∴BC×AE=24,
∴AE=cm.
故答案为: cm.
此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
12、8 P1(0,-4),P2(-4,-4),P3(4,4)
【解析】
解:如图
∵△AOE的面积为4,函数y=的图象过一、三象限,
∴S△AOE=•OE•AE=4,
∴OE•AE=8,
∴xy=8,
∴k=8,
∵函数y=2x和函数y=的图象交于A、B两点,
∴2x=,
∴x=±2,
当x=2时,y=4,当x=-2时,y=-4,
∴A、B两点的坐标是:(2,4)(-2,-4),
∵以点B、O、E、P为顶点的平行四边形共有3个,
∴满足条件的P点有3个,分别为:
P1(0,-4),P2(-4,-4),P3(4,4).
故答案为:8;P1(0,-4),P2(-4,-4),P3(4,4).
本题考查反比例函数综合题.
13、
【解析】
可以分别将x=1和x=2代入函数算出的值,再进行比较;或者根据函数的增减性,判断函数y随x的变化规律也可以得出答案.
【详解】
解:∵一次函数
∴y随x增大而减小
∵1<2
∴
故答案为:
本题考查一次函数的增减性,熟练掌握一次函数增减性的判断是解题关键.
三、解答题(本大题共5个小题,共48分)
14、现在每天加固长度为150米
【解析】
设原计划每天加固的长度是x米,则现在每天加固的长度是x(1+50%)=x米,可由题意列出一个等量关系:完成此段加固工程所需天数将比原计划缩短5天,列出方程,求出结果.
【详解】
解:设原计划每天加固长度为x米,则现在每天加固长度为1.5x米,
,解得,经检验,是此分式方程的解.
本题考查分式方程的运用,熟练掌握计算法则是解题关键.
15、(1)S四边形ABCD;(2)见详解;(1)S四边形ABCD ;(4)AEO,OEB;(5)见详解;(6);(7)
【解析】
(1)先证四边形AEBO, 四边形BFCO, 四边形CGDO, 四边形DHAO都是平行四边形,可得S△ABO=S四边形AEBO, S△BCO=S四边形BFCO, S△CDO=S四边形CGDO, SADO=S四边形DHAO,
即可得出结论;
(2)证明,和,,即可得出结论;
(1)由,可得S四边形MNHE=S△ABD, S四边形MNGF=S△CBD,即可得出结论;
(4)有旋转的定义即可得出结论;
(5)先证,得到,再证,即可得出结论;
(6)应用方法1,过点H作HM⊥EF与点M,再计算即可得出答案;
(7)应用方法1,过点O作OM⊥IK与点M, 再计算即可得出答案.
【详解】
解:方法一:如图,
∵EF∥AC∥HD,EH∥DB∥FG,
∴四边形AEBO, 四边形BFCO, 四边形CGDO, 四边形DHAO都是平行四边形,
∴S△ABO=S四边形AEBO, S△BCO=S四边形BFCO, S△CDO=S四边形CGDO, SADO=S四边形DHAO,
∴.
故答案为.
方法二:如图,连接.
(1),分别为,中点
..
,分别为,中点
.
,
四边形为平行四边形
(2),分别为,中点
..
∴S四边形MNHE=S△ABD, S四边形MNGF=S△CBD,
∴
故答案为.
方法1.(1)有旋转可知;.
故答案为∠AEO;∠OEB.
(2)证明:有旋转知.
.
旋转.
四边形为平行四边形
应用1:如图,应用方法1,过点H作HM⊥EF与点M,
∵,
∴∠AEM=60°, ∠EHM=10°,
∵,,
∴EM=1,EH=6,EF=8,
∴HM==,
∴=EF·HM=24
∴=,
故答案为.
应用2:如图,应用方法1,过点O作OM⊥IK与点M,
,
∵,
∴∠MIO=60°, ∠IOM=10°,
∵,,
∴IM=1,OI=6,IK=8,
∴OM==,
∴=KI·OM=24
∴S四边形ABCD=,
故答案为.
此题主要考查了平行四边形的判定与性质,旋转,三角形的中位线,三角形和平行四边形的面积,选择合适的方法来求面积是解决问题的关键.
16、7200元
【解析】
仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.
【详解】
连接BD,
在Rt△ABD中,BD2=AB2+AD2=32+42=52,
在△CBD中,CD2=132,BC2=122,
而122+52=132,
即BC2+BD2=CD2,
∴∠DBC=90°,
S四边形ABCD=S△BAD+S△DBC=⋅AD⋅AB+DB⋅BC=×4×3+×12×5=36.
所以需费用36×200=7200(元).
此题考查勾股定理的应用,解题关键在于作辅助线和利用勾股定理进行计算.
17、(1)乙文件袋每个进价为6元,则甲文件袋每个为8元;(2)①;②w=﹣2x+600,甲文具袋进60个,乙文件袋进120个,获得利润最大为480元.
【解析】
(1)关键语是“用120元购进的甲文具袋与用90元购进的乙文具袋的数量相等”可根据此列出方程.
(2)①根据题意再由(1)可列出方程
②根据甲每个的售价为10元,乙每个的售价为9元,且在进货时,甲的购进数量不少于60个,若这批文具袋全部售完可获利w元,可列出方程,求出解析式再根据函数图象,分析x的取值即可解答
【详解】
解:(1)设乙文件袋每个进价为x元,则甲文件袋每个为(x+2)元,
根据题意得:
解得x=6
经检验,x=6是原分式方程的解
∴x+2=8
答:乙文件袋每个进价为6元,则甲文件袋每个为8元
(2)①根据题意得:8x+6y=1200
y=200﹣
②w=(10﹣8)x+(9﹣6)y=2x+3(200﹣)=﹣2x+600
∵k=﹣2<0
∴w随x的增大而减小
∵x≥60,且为整数
∴当x=60时,w有最大值为,w=60×(﹣2)+600=480
此时,y=200﹣×60=120
答:甲文具袋进60个,乙文件袋进120个,获得利润最大为480元.
此题考查二元一次方程的应用和分式方程的应用,解题关键在于列出方程
18、(1)(a-b)(x+y);(2)
【解析】
(1)提出公因式(a-b)即可;
(2)根据分式方程的解法,去分母,即可解出.
【详解】
(1)分解因式:
解:原式=
(2)解分式方程:
解:去分母得,
解这个方程,得
经检验:是原方程的解.
本题考查了因式分解及分式方程的解法,解题的关键是掌握提公因式法及分式方程的解法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
当m-3>0时,直线均经过第一象限;当m-3<0时,直线与y轴交点≤0时不经过第一象限.
【详解】
解:当m-3>0,即m>3时,直线均经过第一象限,不合题意,则m<3;
当m<3时,只有-3m+1≤0才能使得直线不经过第一象限,解得,
综上,的取值范围是:.
本题考查了一次函数系数与象限位置的关系,注意分类讨论.
20、60
【解析】
根据平行线的性质:两直线平行内错角相等,可得∠BOD=50°,再根据对顶角相等可求出∠2.
【详解】
解:如图所示:
∵直线a∥b,∠3=50°,
∴∠BOD=50°,
又∵∠1=∠BOD+∠2,
∠2=∠1-∠BOD=110°-50°=60°.
故本题答案为:60.
平行线的性质及对顶角相等是本题的考点,熟练掌握平行线的性质是解题的关键.
21、8 0.4
【解析】
频数是指某个数据出现的次数,频率是频数与总数之比,据频数、频率的定义计算即可.
【详解】
解:在64.5~66.5这一小组中,65出现5次,66出现3次,出现数据的次数为5+3=8次,故其频数为8,,故其频率为0.4.
故答案为: (1). 8 (2). 0.4
本题考查了频数与频率,依据两者的定义即可解题.
22、.
【解析】
根据正方形的性质和勾股定理求边长即可.
【详解】
∵四边形ABCD是正方形,∴AO=DOAC4=2,AO⊥DO,∴△AOD是直角三角形,∴AD.
故答案为:2.
本题考查了勾股定理及正方形性质,属于基础题,比较简单.
23、4.1
【解析】
直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.
【详解】
解:∵菱形的两条对角线分别为6cm和1cm,
∴菱形的边长为:=5(cm),
设菱形的高为:xcm,则5x=×6×1,
解得:x=4.1.
故答案为:4.1.
此题主要考查了菱形的性质,正确得出菱形的边长是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)12,3,0.34;(2)见解析;(3)180幅
【解析】
(1)由频数和频率求得总数,根据频率频数总数求得、、的值;
(2)根据(1)中所求数据补全图形即可得;
(3)总数乘以80分以上的频率即可.
【详解】
解:(1),
,
,
故答案为12,3,0.34;
(2)补全数分布直方图
(3)全校被展评作品数量(幅,
答:全校被展评作品数量180幅.
本题考查读频数(率分布直方图的能力和利用统计图获取信息的能力,以及条形统计图;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
25、小路的宽为2米.
【解析】
根据“小路与观赏亭的面积之和占草坪面积的”,建立方程求解即可得出结论.
【详解】
设小路的宽为x米,
由题意得,(5x)2+(40+50)x﹣2×x×5x=×40×50
解得,x=2或x=﹣8(不合题意,舍去)
答:小路的宽为2米.
考查一元二次方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.
26、,解集在数轴上表示如图见解析.
【解析】
先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.
【详解】
解:由①得:
由②得:
不等式组解集为
解集在数轴上表示如图:
本题考查了解一元一次不等式组的应用,解此题的关键是能求出不等式组的解集,难度适中.
题号
一
二
三
四
五
总分
得分
分数段
频数
频率
60≤x<70
18
0.36
70≤x<80
17
c
80≤x<90
a
0.24
90≤x≤100
b
0.06
合计
1
河南省安阳市滑县2024-2025学年数学九上开学教学质量检测试题【含答案】: 这是一份河南省安阳市滑县2024-2025学年数学九上开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省叶县数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份2024-2025学年河南省叶县数学九年级第一学期开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省信阳九中学九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年河南省信阳九中学九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。