河南省邓州市2024-2025学年数学九年级第一学期开学调研模拟试题【含答案】
展开
这是一份河南省邓州市2024-2025学年数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为( )
A.2B.4C.6D.8
2、(4分)下列图形中,不属于中心对称图形的是( )
A.圆B.等边三角形C.平行四边形D.线段
3、(4分)下列分式中,最简分式是
A.B.C.D.
4、(4分)下列各命题的逆命题成立的是( )
A.全等三角形的对应角相等B.若两数相等,则它们的绝对值相等
C.若两个角是45,那么这两个角相等D.两直线平行,同位角相等
5、(4分)关于一次函数的图象,下列说法正确的是( )
A.图象经过第一、二、三象限
B.图象经过第一、三、四象限
C.图象经过第一、二、四象限
D.图象经过第二、三、四象限
6、(4分)已知是关于的方程的两个实数根,且满足,则的值为( )
A.3B.3或C.2D.0或2
7、(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )
A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<0
8、(4分)汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量(升)与行驶时间(小时)之间的函数关系的图象是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为____.
10、(4分)反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是________.
11、(4分)关于x的方程有增根,则m的值为_____
12、(4分)边长为2的等边三角形的面积为__________
13、(4分)如图,在矩形ABCD,BE平分,交AD于点E,F是BE的中点,G是BC的中点,连按EC,若,,则FG的长为________。
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF,
求证:四边形ABCD是平行四边形.
15、(8分)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(结果保留根号)
16、(8分)如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.
(1)求直线AD及抛物线的解析式;
(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?
(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.
17、(10分)某商品的进价为每件40元,售价每件不低于60元且不高于80元,当售价为每件60元时,每个月可卖出100件;经调查发现,每件商品每上涨1元,每月少卖出2件.设每件商品的售价为x元(x为正整数).
(1)求每个月的销售利润;(用含有x代数式表示)
(2)若每个月的利润为2250元,定价应为多少元?
18、(10分)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知四边形是矩形,点是边的中点,以直线为对称轴将翻折至,联结,那么图中与相等的角的个数为_____________
20、(4分)已知实数满足,则以的值为两边长的等腰三角形的周长是_________________.
21、(4分)如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.
(Ⅰ)∠ABC的大小为_____(度);
(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.
22、(4分)图中的虚线网格是等边三角形,它的每一个小三角形都是边长为1的等边三角形.
(1)如图①,连接相邻两个小正三角形的顶点A,B,则AB的长为_______
(2)在如图②所示的网格中,用无刻度的直尺,画一个斜边长为的直角三角形,且它的顶点都在格点上.
23、(4分)将直线平移,使之经过点,则平移后的直线是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′(不写画法);
(2)并直接写出点B′、C′的坐标:B′( )、C′( );
(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是( ).
25、(10分)先化简再求值:,其中m是不等式的一个负整数解.
26、(12分)如图,四边形中,,,.
(1)求证:;
(2)若,,,分别是,,,的中点,求证:线段与线段互相平分.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据正方形的性质,和BC=2OB,AD=4,可求出OB、AB,进而确定点A的坐标,代入求出k即可.
【详解】
解:∵正方形ABCD,AD=4,
∴AB=AD=4=BC,
∵BC=2OB,
∴OB=2,
∴A(2,4),代入y=得:k=8,
故选:D.
本题考查了反比例函数与几何问题中k的求解,解题的关键是根据几何图形的性质得出反比例函数图象上点的坐标.
2、B
【解析】
试题分析:根据中心对称图形的概念求解.
解:A、是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项正确;
C、是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项错误.
故选B.
【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、C
【解析】
最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.
【详解】
A、,不符合题意;
B、,不符合题意;
C、是最简分式,符合题意;
D、,不符合题意;
故选C.
本题考查了最简分式的定义及求法一个分式的分子与分母没有公因式时,叫最简分式分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题在解题中一定要引起注意.
4、D
【解析】
先分别写出四个命题的逆命题,根据三角形全等的判定方法对A的逆命题进行判断;根据相反数的绝对值相等对B的逆命题进行判断;根据两个角相等,这两个角可为任意角度可对C的逆命题进行判断;根据平行线的判定定理对D的逆命题进行判断.
【详解】
A. “全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以A选项错误;
B. “若两数相等,则它们的绝对值相等”的逆命题为“若两数的绝对值相等,则这两数相等”,此逆命题为假命题,所以B选项错误;
C. “若两个角是45°,那么这两个角相等”的逆命题为“若两个角相等,你们这两个角是45°”,此逆命题为假命题,所以C选项错误;
D. “两直线平行,同位角相等”的逆命题为“同位角相等,两直线平行”,此逆命题为真命题,所以D选项正确.
故选D.
此题考查命题与定理,解题关键在于掌握掌握各性质定义.
5、B
【解析】
试题分析:∵一次函数的,∴函数图象经过第一、三象限,∵,∴函数图象与y轴负半轴相交,∴一次函数的图象经过第一、三、四象限.故选B.
考点:一次函数图象与系数的关系.
6、A
【解析】
根据根与系数的关系得出m+n=-(2b+3),mn=b2,变形后代入,求出b值,再根据根的判别式判断即可.
【详解】
解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,
∴m+n=-(2b+3),mn=b2,
∵+1=- ,
∴+=-1,
∴=-1,
∴=-1,
解得:b=3或-1,
当b=3时,方程为x2+9x+9=0,此方程有解;
当b=-1时,方程为x2+x+1=0,△=12-4×1×1=-3<0,此时方程无解,
所以b=3,
故选:A.
本题考查一元二次方程的解,根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键.
7、B
【解析】
试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,
∴k<0,b>0,
故选B.
考点:一次函数的性质和图象
8、B
【解析】
根据油箱内余油量=原有的油量-t小时消耗的油量,可列出函数关系式,得出图象.
【详解】
解:由题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:
Q=40-5t(0≤t≤8),
结合解析式可得出图象:
故选:B.
此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.
【详解】
∵在△ABC中,∠B=90°,AB=3,AC=5,
∵△ADE是△CDE翻折而成,
∴AE=CE,
∴AE+BE=BC=4,
∴△ABE的周长=AB+BC=3+4=1.
故答案为:1.
本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
10、1
【解析】
过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.
【详解】
解:由题意得:S△MOP=|k|=1,k=±1,
又因为函数图象在一象限,所以k=1.
故答案为:1.
主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
11、-1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
【详解】
方程两边都乘(x−3),得2−x−m=2(x−3)
∵原方程增根为x=3,
∴把x=3代入整式方程,得2−3−m=0,
解得m=−1.
故答案为:−1.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
12、
【解析】
根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.
【详解】
∵等边三角形高线即中点,AB=2,
∴BD=CD=1,
在Rt△ABD中,AB=2,BD=1,
∴
∴
故答案为:
考查等边三角形的性质以及面积,勾股定理等,熟练掌握三线合一的性质是解题的关键.
13、5
【解析】
根据BE平分∠ABC,可得∠ABE=45°,△ABE是等腰直角三角形,再根据勾股定理可得EC,根据F是BE的中点,G是BC的中点,可判定FG是△BEC的中位线,即可求得FG=EC .
【详解】
∵矩形ABCD中,BE平分∠ABC,
∴∠A=90°,∠ABE=45°,
∴ABE是等腰直角三角形,
∴AE=AB
又∵ABCD是矩形,
∴AB=BC=14, DC=AB=8,∠EDC=90°,
∴DE=AD-AE=14-8=6,
EC=,
∵F是BE的中点,G是BC的中点,
∴FG=EC=5 .
故答案为5 .
本题考查了角平分线的定义、等腰三角形的判定与性质、勾股定理三角形中位线的定义以及三角形中位线的性质 .
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
由垂直得到∠EAD=∠FCB=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可.
【详解】
证明:∵AD//BC
∴∠ADE=∠CBF
∵AE⊥AD,CF⊥BC.
∴∠DAE=∠BCF=90°
在△ADE和△CBF中
∵∠DAE=∠BCF,∠ADE=∠CBF,AE=CF.
∴△ADE≌△CBF(AAS)
∴AD=BC
∵AD//BC
∴四边形ABCD是平行四边形.
本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出AD=BC.
15、直线L上距离D点400米的C处开挖.
【解析】
首先证明△BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,然后再代入BD=800米进行计算即可.
【详解】
∵CD⊥AC,
∴∠ACD=90°,
∵∠ABD=135°,
∴∠DBC=45°,
∴∠D=45°,
∴△BCD是等腰直角三角形,CB=CD,
在Rt△DCB中:CD2+BC2=BD2,
2CD2=8002,
CD=400(米),
答:直线L上距离D点400米的C处开挖.
此题考查等腰直角三角形的判定及性质,利用勾股定理求直角三角形的边长,邻补角的性质求角度.
16、(1)y=x2+2x﹣1;(2)当m=-时,PQ最长,最大值为;(1)R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
【解析】
(1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;
(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
(1)根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案
【详解】
解:(1)将A(1,0),B(﹣1,0)代入y=ax2+bx﹣1得:
解得:
∴抛物线的解析式为:y=x2+2x﹣1,
当x=﹣2时,y=(﹣2)2﹣4﹣1=﹣1,
∴D(﹣2,﹣1),
设直线AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣1)代入得:
解得:
∴直线AD的解析式为y=x﹣1;
因此直线AD的解析式为y=x﹣1,抛物线的解析式为:y=x2+2x﹣1.
(2)∵点P在直线AD上,Q抛物线上,P(m,n),
∴n=m﹣1 Q(m,m2+2m﹣1)
∴PQ的长l=(m﹣1)﹣(m2+2m﹣1)=﹣m2﹣m+2 (﹣2≤m≤1)
∴当m= 时,PQ的长l最大=﹣( )2﹣()+2= .
答:线段PQ的长度l与m的关系式为:l=﹣m2﹣m+2 (﹣2≤m≤1)
当m=时,PQ最长,最大值为.
(1)①若PQ为平行四边形的一边,则R一定在直线x=﹣2上,如图:
∵PQ的长为0<PQ≤的整数,
∴PQ=1或PQ=2,
当PQ=1时,则DR=1,此时,在点D上方有R1(﹣2,﹣2),在点D下方有R2(﹣2,﹣4);
当PQ=2时,则DR=2,此时,在点D上方有R1(﹣2,﹣1),在点D下方有R4(﹣2,﹣5);
②若PQ为平行四边形的一条对角线,则PQ与DR互相平分,此时R与点C重合,即R5(0,﹣1)
综上所述,符合条件的点R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
答:符合条件的点R共有5个,即:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
此题考查一元二次方程-用待定系数法求解析式,二次函数的性质,平行四边形的性质,解题关键在于把已知点代入解析式
17、(1)﹣2x2+300x﹣8800;(2)若每个月的利润为2250元,定价应为65元.
【解析】
(1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100-2(x-60)]件,根据销售利润=每件的利润×销售数量,即可得出结论;
(2)由(1)的结论结合每个月的利润为2250元,即可得出关于x的一元二次方程,解之取大于等于60小于等于80的值即可得出结论.
【详解】
(1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100﹣2(x﹣60)]件,
∴每个月的销售利润为(x﹣40)[100﹣2(x﹣60)]=﹣2x2+300x﹣8800;
(2)根据题意得:﹣2x2+300x﹣8800=2250,
解得:x1=65,x2=85(不合题意,舍去).
答:若每个月的利润为2250元,定价应为65元.
本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据数量关系,列出代数式;(2)找准等量关系,正确列出一元二次方程.
18、见解析
【解析】
由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由点E、F分别是▱ABCD边AD、BC的中点,可得DE=BF,继而证得四边形BFDE是平行四边形,即可证得结论.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵点E、F分别是▱ABCD边AD、BC的中点,
∴DE=AD,BF=BC,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE=DF.
本题主要考查平行四边形的判定与性质定理,掌握对边平行且相等的四边形是平行四边形,是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
由折叠的性质和等腰三角形的性质可得,∠EDF=∠EFD=∠BEF=∠AEB,由平行线的性质,可得∠AEB=∠CBE,进而得出结论.
【详解】
由折叠知,∠BEF=∠AEB,AE=FE,
∵点E是AD中点,
∴AE=DE,
∴ED=FE,
∴∠FDE=∠EFD,
∵∠AEF=∠EDF+∠DFE=∠AEB=∠BEF
∴∠AEB=∠EDF,
∵AD∥BC,
∴∠AEB=∠CBE,
∴∠EDF=∠EFD=∠BEF=∠AEB=∠CBE,
故答案为:4
本题属于折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是由等腰三角形的性质得出∠EDF=∠AEB.
20、19
【解析】
先根据非负数的性质求得x、y的值,然后再根据等腰三角形的性质以及三角形三边关系进行讨论即可得.
【详解】
根据题意得,x-3=0,y-8=0,
解得x=3,y=8,
①3是腰长时,三角形的三边分别为3、3、8,
∵3+3
相关试卷
这是一份2024-2025学年辽宁省抚顺市望花区数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年安徽省临泉数学九年级第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省衡阳市九年级数学第一学期开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。