![河南省开封市金明中学2025届数学九年级第一学期开学达标测试试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16276174/0-1729553812049/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河南省开封市金明中学2025届数学九年级第一学期开学达标测试试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16276174/0-1729553812092/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河南省开封市金明中学2025届数学九年级第一学期开学达标测试试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16276174/0-1729553812110/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
河南省开封市金明中学2025届数学九年级第一学期开学达标测试试题【含答案】
展开这是一份河南省开封市金明中学2025届数学九年级第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于( )
A.135°B.180°C.225°D.270°
2、(4分)下面式子从左边到右边的变形属于因式分解的是( ).
A.x2-x-2=x(x一1)-2B.
C.(x+1)(x—1)=x2 - 1D.
3、(4分)某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1100m,则隧道AB的长度为( )
A.3300mB.2200mC.1100mD.550m
4、(4分)已知二次函数(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为( )
A.或1B.或1C.或D.或
5、(4分)下列方程中有实数根的是( )
A.;B.=;C.;D.=1+.
6、(4分)数据用小数表示为( )
A.B.C.D.
7、(4分)已知直线y=(k﹣3)x+k经过第一、二、四象限,则k的取值范围是( )
A.k≠3B.k<3C.0<k<3D.0≤k≤3
8、(4分)下列各式中,一定是二次根式的是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.
10、(4分)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1小时后,它们相距______________海里.
11、(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.
12、(4分)如图,小明作出了边长为2的第1个正△,算出了正△的面积.然后分别取△的三边中点、、,作出了第2个正△,算出了正△的面积;用同样的方法,作出了第3个正△,算出了正△的面积,由此可得,第2个正△的面积是__,第个正△的面积是__.
13、(4分)如图,在直角三角形中,,、、分别是、、的中点,若=6厘米,则的长为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.
(1)求证:CE=CF.
(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗;为什么;
(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.
①若AE=6,DE=10,求AB的长;
②若AB=BC=9,BE=3,求DE的长.
15、(8分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
16、(8分)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形, 使C点与AB边上的一点D重合.
(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;
(2)在(1)的条件下,若DE=1,求△ABC的面积.
17、(10分)如图,在中,,于,平分,分别交,于,,于.连接,求证:四边形是菱形.
18、(10分)如图,在中,AD是高,E、F分别是AB、AC的中点.
(1)求证:EF垂直平分AD;
(2)若四边形AEDF的周长为24,,求AB的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)函数中自变量的取值范围是_________________.
20、(4分)如图,与穿过正六边形,且,则的度数为______.
21、(4分)一次函数y=kx+b的图象如图所示,若点A(3,m)在图象上,则m的值是__________.
22、(4分)分解因式xy2+4xy+4x=_____.
23、(4分)如图,正方形AFCE中,D是边CE上一点,把绕点A顺时针旋转90°,点D对应点交CF延长线于点B,若四边形ABCD的面积是、则AC长__________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A、
(1)求证:四边形ACED是矩形;
(2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.
25、(10分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填空:a= ,b= ,c= ;
(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?
(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.
26、(12分)如图,在平行四边形中,已知点在上,点在上,且.
求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=90°,然后即可求出答案.
【详解】
在△ABC和△AEF中,
∴△ABC≌△AEF(SAS)
∴∠5=∠BCA
∴∠1+∠5=∠1+∠BCA=90°
在△ABD和△AEF中
∴△ABD≌△AEH(SAS)
∴∠4=∠BDA
∴∠2+∠4=∠2+∠BDA=90°
∵∠3=45°
∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°
故答案选C.
本题考查的是全等三角形的判定与性质,能够根据全等将所求角转化是解题的关键.
2、B
【解析】
根据因式分解的意义求解即可.
【详解】
A、没把多项式转化成几个整式积的形式,故A不符合题意;
B、把多项式转化成几个整式积的形式,故B符合题意;
C、是整式的乘法,故C不符合题意;
D、是整式的乘法,故D不符合题意;
故选B.
本题考查了因式分解的意义,把多项式转化成几个整式积的形式.
3、B
【解析】
∵D,E为AC和BC的中点,
∴AB=2DE=2200m,
故选:B.
4、A
【解析】
首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.
【详解】
依题意知a>0,>0,a+b﹣2=0,
故b>0,且b=2﹣a,
a﹣b=a﹣(2﹣a)=2a﹣2,
于是0<a<2,
∴﹣2<2a﹣2<2,
又a﹣b为整数,
∴2a﹣2=﹣1,0,1,
故a=,1,,
b=,1,,
∴ab=或1,故选A.
根据开口和对称轴可以得到b的范围.按照左同右异规则.当对称轴在y轴的左侧,则a,b符号相同,在右侧则a,b符号相反.
5、B
【解析】
【分析】根据算术平方根意义或非负数性质以及分式方程的意义,可以判断方程的根的情况.
【详解】A. ,算术平方根不能是负数,故无实数根;
B. =,两边平方可化为二元一次方程,有实数根,故可以选;
C.方程化为 ,平方和不能是负数,故不能选;
D.由 =1+得x=1,使分母为0,故方程无实数根.
故选:B
【点睛】本题考核知识点:方程的根.解题关键点:根据方程的特殊形式判断方程的根的情况.
6、B
【解析】
由题意根据把还原成原数,就是把小数点向左移动4位进行分析即可.
【详解】
解:=.
故选:B.
本题考查写出用科学记数法表示的原数.将科学记数法a×10-n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.
7、C
【解析】
根据一次函数的性质列式求解即可.
【详解】
由题意得
,
∴ 0<k<3.
故选C.
本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.
8、C
【解析】
根据二次根式的定义进行判断.
【详解】
解:A.无意义,不是二次根式;
B.当时,是二次根式,此选项不符合题意;
C.是二次根式,符合题意;
D.不是二次根式,不符合题意;
故选C.
本题考查了二次根式的定义,关键是掌握把形如的式子叫做二次根式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.
【详解】
作MG⊥DC于G,如图所示:
设MN=y,PC=x,
根据题意得:GN=2,MG=|10-1x|,
在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,
即y1=21+(10-1x)1.
∵0<x<10,
∴当10-1x=0,即x=2时,y1最小值=12,
∴y最小值=2.即MN的最小值为2;
故答案为:2.
本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.
10、20
【解析】
根据题意画出图形,根据题目中AB、AC的夹角可知它为直角三角形,然后根据勾股定理解答.
【详解】
如图,
∵由图可知AC=16×1=16(海里),
AB=12×1=12(海里),
在Rt△ABC中,BC==20(海里).
故它们相距20海里.
故答案为:20
本题考查的是勾股定理,正确的掌握方位角的概念,从题意中得出△ABC为直角三角形是关键.
11、1.
【解析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.
【详解】
由题意可得,=0.03,
解得,n=1,
故估计n大约是1,
故答案为1.
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
12、,
【解析】
根据等边三角形的性质求出正△A1B1C1的面积,根据三角形中位线定理得到,根据相似三角形的性质计算即可.
【详解】
正△的边长,
正△的面积,
点、、分别为△的三边中点,
,,,
△△,相似比为,
△与△的面积比为,
正△的面积为,
则第个正△的面积为,
故答案为:;.
本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
13、6厘米
【解析】
根据直角三角形斜边中线等于斜边一半算出AB,再根据中位线的性质求出EF即可.
【详解】
∵∠BCA=90°,且D是AB的中点,CD=6,
∴AB=2CD=12,
∵E、F是AC、BC的中点,
∴EF=.
故答案为:6厘米
本题考查直角三角形中线的性质、中位线的性质,关键在于熟练掌握相关基础知识.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)成立;(3)①12;②7.1
【解析】
(1)先判断出∠B=∠CDF,进而判断出△CBE≌△CDE,即可得出结论;
(2)先判断出∠BCE=∠DCF,进而判断出∠ECF=∠BCD=90°,即可得出∠GCF=∠GCE=41°,得出△ECG≌△FCG即可得出结论;
(3)先判断出矩形ABCH为正方形,进而得出AH=BC=AB,
①根据勾股定理得,AD=8,由(1)(2)知,ED=BE+DH,设BE=x,进而表示出DH=10-x,用AH=AB建立方程即可得出结论;
②由(1)(2)知,ED=BE+DH,设DE=a,进而表示出DH=a-3,AD=12-a,AE=6,根据勾股定理建立方程求解即可得出结论.
【详解】
解:(1)在正方形ABCD中,
∵BC=CD,∠B=∠ADC,
∴∠B=∠CDF,
∵BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)成立,由(1)知,△CBF≌△CDE,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,
∴∠ECF=∠BCD=90°,
∵∠GCE=41°,
∴∠GCF=∠GCE=41°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF,
∴GE=DF+GD=BE+GD;
(3)如图2,过点C作CH⊥AD交AD的延长线于H,
∵AD∥BC,∠B=90°,
∴∠A=90°,
∵∠CHA=90°,
∴四边形ABCH为矩形,
∵AB=BC,
∴矩形ABCH为正方形,
∴AH=BC=AB,
①∵AE=6,DE=10,根据勾股定理得,AD=8,
∵∠DCE=41°,
由(1)(2)知,ED=BE+DH,
设BE=x,
∴10+x=DH,
∴DH=10-x,
∵AH=AB,
∴8+10-x=x+6,
∴x=6,
∴AB=12;
②∵∠DCE=41°,
由(1)(2)知,ED=BE+DH,
设DE=a,
∴a=3+DH,
∴DH=a-3,
∵AB=AH=9,
∴AD=9-(a-3)=12-a,AE=AB-BE=6,
根据勾股定理得,DE2=AD2+AE2,
即:(12-a)2+62=a2,∴a=7.1,
∴DE=7.1.
本题是四边形综合题,考查了矩形的判定,正方形的判定和性质,勾股定理,全等三角形的判定和性质,判断出△ECG≌△FCG是解本题的关键.
15、解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形.
∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.
∴∠ADB=90°.
∴平行四边形AEBD是矩形.
(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:
∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.
∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.
【解析】
试题分析:(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.
(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形,
∵AB=AC,AD是∠BAC的角平分线,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四边形AEBD是矩形;
(2)当∠BAC=90°时,
理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,
∴AD=BD=CD,
∵由(1)得四边形AEBD是矩形,
∴矩形AEBD是正方形.
16、(1)∠A=30°;(1).
【解析】
(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的中点时,AB=1BD=1BC,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证:D为AB的中点;
(1)在Rt△ADE中,根据∠A,ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC进行求解即可.
【详解】
解:(1)添加条件是∠A=30°.
证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,
∵C点折叠后与AB边上的一点D重合,
∴BE平分∠CBD,∠BDE=90°,
∴∠EBD=30°,
∴∠EBD=∠EAB,所以EB=EA;
∵ED为△EAB的高线,所以ED也是等腰△EBA的中线,
∴D为AB中点.
(1)∵DE=1,ED⊥AB,∠A=30°,∴AE=1.
在Rt△ADE中,根据勾股定理,得AD==,
∴AB=1,∵∠A=30°,∠C=90°,
∴BC=AB=.
在Rt△ABC中,AC==3,
∴S△ABC=×AC×BC=.
17、详见解析
【解析】
求出CE=EH,AC=AH,证△CAF≌△HAF,推出∠ACD=∠AHF,求出∠B=∠ACD=∠FHA,推出HF∥CE,推出CF∥EH,得出平行四边形CFHE,根据菱形判定推出即可.
【详解】
∵∠ACB=90°,AE平分∠BAC,EH⊥AB,
∴CE=EH,
在Rt△ACE和Rt△AHE中,AE=AE,CE=EH,
∴Rt△ACE≌ Rt△AHE(HL),
∴AC=AH,
∵AE平分∠CAB,
∴∠CAF=∠HAF,
在△CAF和△HAF中,
,
∴△CAF≌△HAF(SAS),
∴∠ACD=∠AHF,
∵CD⊥AB,∠ACB=90°,
∴∠CDA=∠ACB=90°,
∴∠B+∠CAB=90°,∠CAB+∠ACD=90°,
∴∠ACD=∠B=∠AHF,
∴FH∥CE,
∵CD⊥AB,EH⊥AB,
∴CF∥EH,
∴四边形CFHE是平行四边形,
∵CE=EH,
∴四边形CFHE是菱形.
本题考查了平行四边形的性质和判定,菱形的判定,三角形的内角和定理,全等三角形的性质和判定,角平分线性质等知识点的应用,熟练掌握相关知识是解题的关键.
18、(1)证明过程见解析;(2)AB的长为15.
【解析】
(1)根据线段两端点距离相等的点在线段的垂直平分线即可证明该结论;
(2)根据,可得AF+DF=AC,DE+AE=AB,即可得出答案.
【详解】
(1)证明:∵△ADB和△ADC是直角三角形
且E、F分别是AB、AC的中点
∴,
∴E在线段AD的垂直平分线上,F在线段AD的垂直平分线上
∴EF垂直平分AD
(2)∵,
∴AF+DF=AC,DE+AE=AB
又∵四边形AEDF的周长为24,
∴AB=24-9=15
故AB的长为15.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及到线段两端点距离相等的点在线段的垂直平分线的性质,熟记性质是解决本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、且
【解析】
根据分式和二次根式有意义的条件列不等式组求解即可.
【详解】
根据分式和二次根式有意义的条件可得
解得且
故答案为:且.
本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.
20、
【解析】
根据多边形的内角和公式,求出每个内角的度数,延长 EF 交直线 l1 于点 M,利用平行线的性质把∠1 搬到∠3 处,利用三角形的外角计算出结果
【详解】
延长 EF 交直线 l1于点 M,如图所示
∵ABCDEF 是正六边形
∴∠AFE=∠A=120°
∴∠MFA=60°
∵11∥12
∴∠1=∠3
∵∠3=∠2+∠MFA
∴∠1﹣∠2=∠MFA =60°
故答案为:60°
此题主要考查了平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.
21、2.5
【解析】
先用待定系数法求出直线解析式,再将点A代入求解可得.
【详解】
解:将(-2,0)、(0,1)代入y=kx+b,得:,
解得:
∴y=x+1,
将点A(3,m)代入,得:
即
故答案为:2.5
本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.
22、x(y+2)2
【解析】
原式先提取x,再利用完全平方公式分解即可。
【详解】
解:原式=,故答案为:x(y+2)2
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
23、2
【解析】
根据旋转的性质得到S△AED=S△AFB,根据四边形ABCD的面积是18cm1得出正方形AFCE的面积是18cm1,求出AE、EC的长,根据等腰直角三角形的性质求出AC即可.
【详解】
解:∵四边形AFCE是正方形,
∴AE=EC,∠E=90°,
△ADE绕点A顺时针旋转90°,点D对应点交CF延长线于点B,
∴△ABF≌△ADE,
∴正方形AFCE的面积=四边形ABCD的面积=18cm1.
∴AE=CE==,
∴AC=AE=2cm.
故答案为:2.
本题考查了旋转的性质,全等三角形的性质,正方形性质,关键是求出正方形AFCE的边长.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析(2)∠E=2∠BDE
【解析】
(1)由四边形ABCD是平行四边形,EC=BC,易证得四边形ACED是平行四边形,又由AC⊥AD,即可证得四边形ACED是矩形;
(2)根据矩形的性质得∠E=∠DAC=90°,可证得DA=AF,由等腰三角形的性质可得∠ADF=45°,则∠BDE=45°,可得出∠E=2∠BDE.
【详解】
(1)证明:因为ABCD是平行边形,
∴AD=BC,AD∥BC,
∵BC=CE,点E在BC的延长线上,
∴AD=EC,AD∥EC,
∴四边形ACED为平行四边形,
∵AC⊥AD,
∴平行四边形ACED为矩形
(2)∠E=2∠BDE
理由:∵平行四边形ABCD中,AC=2AF,
又∵AC=2AD,
∴AD=AF,
∴∠ADF=∠AFD,
∵AC∥ED,
∴∠BDE=∠BFC,
∵∠BFC=∠AFD,
∴∠BDE=∠ADF=45°,
∴∠E=2∠BDE
此题考查了矩形的判定与性质.熟悉矩形的判定和性质是关键.
25、(1)85,85,80;(2)七年级决赛成绩较好;(3)七年级代表队选手成绩比较稳定.
【解析】
(1)根据平均数、中位数、众数的概念分析计算即可;
(2)根据图表可知七八年级的平均分相同,因此结合两个年级的中位数来判断即可;
(3)根据方差的计算公式来计算即可,然后根据“方差越小就越稳定”的特点来判断哪个队成绩稳定即可.
【详解】
解:(1)七年级的平均分a=,众数b=85,
八年级选手的成绩是:70,75,80,100,100,故中位数c=80;
故答案为85,85,80;
(2)由表格可知七年级与八年级的平均分相同,七年级的中位数高,
故七年级决赛成绩较好;
(3)S2七年级=(分2),
S2七年级<S2八年级
∴七年级代表队选手成绩比较稳定.
本题主要考查了平均数、中位数、众数、方差的概念及统计意义,熟练掌握其概念是解题的关键.
26、证明见解析.
【解析】
由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=FD,易证四边形EBFD是平行四边形.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∵AE=CF.
∴BE=FD,BE∥FD,
∴四边形EBFD是平行四边形,
∴DE=BF.
本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
题号
一
二
三
四
五
总分
得分
批阅人
平均分(分)
中位数(分)
众数(分)
方差(分2)
七年级
a
85
b
S七年级2
八年级
85
c
100
160
相关试卷
这是一份2025届河南省开封市九年级数学第一学期开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年河南省开封市金明中学数学九上期末复习检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,平面直角坐标系中,点E,反比例函数y=的图象经过点,对于二次函数y=2等内容,欢迎下载使用。
这是一份2023-2024学年河南省开封市金明中学九年级数学第一学期期末质量检测试题含答案,共7页。试卷主要包含了方程x2﹣x=0的解为,已知sinα=,求α等内容,欢迎下载使用。