终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    河南省洛阳市孟津县2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】

    立即下载
    加入资料篮
    河南省洛阳市孟津县2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】第1页
    河南省洛阳市孟津县2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】第2页
    河南省洛阳市孟津县2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省洛阳市孟津县2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份河南省洛阳市孟津县2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列说法中,其中不正确的有( )
    ①任何数都有算术平方根;
    ②一个数的算术平方根一定是正数;
    ③a2的算术平方根是a;
    ④算术平方根不可能是负数.
    A.0个B.1个C.2个D.3个
    2、(4分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )
    A.AF=AEB.△ABE≌△AGFC.EF=D.AF=EF
    3、(4分)如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为
    A.1B.2
    C.3D.4
    4、(4分)下列交通标志图案中,是中心对称图形的是( )
    A.B.C.D.
    5、(4分)如图,在平行四边形ABCD中,如果∠A+∠C=100°,则∠B的度数是( )
    A.130°B.80°C.100°D.50°
    6、(4分)下列条件中,不能判定四边形是正方形的是( )
    A.对角线互相垂直且相等的四边形B.一条对角线平分一组对角的矩形
    C.对角线相等的菱形D.对角线互相垂直的矩形
    7、(4分)用配方法解方程x2﹣x﹣1=0时,应将其变形为( )
    A.(x﹣)2=B.(x+)2=
    C.(x﹣)2=0D.(x﹣)2=
    8、(4分)如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交边于点,若,,则的面积是()
    A.15B.30C.45D.60
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)分解因式:x2-2x+1=__________.
    10、(4分)五子棋的比赛规则是:一人执黑子,一人执白子,两人轮流放棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在位置用坐标表示是(-2,2),黑棋B所在位置用坐标表示是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,则点C的坐标是__________.
    11、(4分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为______.
    12、(4分)若最简二次根式与的被开方数相同,则a的值为______.
    13、(4分)如图,⊙O 是△ABC 的外接圆,已知∠ABO=30º,则∠ACB 的为_____º.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接.
    (1)求出直线的解析式;
    (2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值.
    (3)为直线上一点,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由.
    15、(8分)为了解某中学学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:
    根据以上提供的信息,解答下列问题:
    (1)x ,a ,b ;
    (2)补全上面的条形统计图;
    (3)若该校共有学生5000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.
    16、(8分)先化简,再求值:,其中a=1+.
    17、(10分)解不等式组:
    18、(10分)如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB//DC,AC=10,BD=1.
    (1)求证:四边形ABCD是平行四边形;
    (2)若AC⊥BD,求平行四边形ABCD的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)点M(a,2)是一次函数y=2x-3图像上的一点,则a=________.
    20、(4分)平行四边形ABCD中,若,=_____.
    21、(4分)如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE= .
    22、(4分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为_____cm.
    23、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交边BC于点E,AD=5,AB=3,则BE=________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,平行四边形ABCD的四个内角的平分线相交成四边形EFGH,求证:
    (1)EG=HF.
    (2)EG=BC-AB.
    25、(10分)如图,将--张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点作交于点连接交于点.
    (1)判断四边形的形状,并说明理由,
    (2)若,求的长,
    26、(12分)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.
    (1)求BGC的度数;
    (2)若CE=1,H为BF的中点时,求HG的长度;
    (3)若图中阴影部分的面积与正方形ABCD的面积之比为2:3,求△BCG的周长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    ①②③④分别根据平方根和算术平方根的概念即可判断.
    【详解】
    解:根据平方根概念可知:
    ①负数没有算术平方根,故错误;
    ②反例:0的算术平方根是0,故错误;
    ③当a<0时,a2的算术平方根是﹣a,故错误;
    ④算术平方根不可能是负数,故正确.
    所以不正确的有①②③.
    故选D.
    考核知识点:算术平方根.
    2、D
    【解析】
    试题分析:∵AD∥BC,∴∠AFE=∠FEC,∵∠AEF=∠FEC,∴∠AFE=∠AEF,∴AF=AE,∴选项A正确;
    ∵ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵AG=DC,∠G=∠C,∴∠B=∠G=90°,AB=AG,∵AE=AF,∴△ABE≌△AGF,∴选项B正确;
    设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,,即,解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=,∴选项C正确;
    由已知条件无法确定AF和EF的关系,故选D.
    考点:翻折变换(折叠问题).
    3、A
    【解析】
    由△ACD∽△ADB,根据相似三角形的对应边成比例,可得AC:AD=AD:AB,又由AC=4,AD=2,即可求得AB的长.
    【详解】
    ∵△ACD∽△ADB,
    ∴,
    ∴AB==1,
    故选A.
    考查相似三角形的性质,相似三角形对应边成比例.
    4、C
    【解析】
    根据中心对称图形的概念,分别判断即可.
    【详解】
    解:A、B、D不是中心对称图形,C是中心对称图形.
    故选C.
    点睛:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、A
    【解析】
    根据平行四边形的性质即可解答.
    【详解】
    解:在平行四边形ABCD中,
    ∠A+∠C=100°,
    故∠A=∠C=50°,
    且AD∥BC,
    故∠B=180°-50°=130°.
    故答案选A.
    本题考查平行四边形性质,对边平行,熟悉掌握是解题关键.
    6、A
    【解析】
    根据正方形的判定方法逐项判断即可.
    【详解】
    对角线互相垂直且相等的四边形不一定是平行四边形,故A不能判定,
    由矩形的一条对角线平分一组对角可知该四边形也是菱形,故B能判定,
    由菱形的对角线相等可知该四边形也是矩形,故C能判定,
    由矩形的对角线互相垂直可知该四边形也是菱形,故D能判定,
    故选A.
    本题主要考查正方形的判定,掌握正方形既是矩形也是菱形是解题的关键.
    7、D
    【解析】
    分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.
    详解:∵x2﹣x﹣1=0,∴x2﹣x=1,∴x2﹣x+=1+,∴(x﹣)2=.
    故选D.
    点睛:配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
    8、B
    【解析】
    作DE⊥AB于E,根据角平分线的性质得到DE=DC=4,根据三角形的面积公式计算即可.
    【详解】
    解:作DE⊥AB于E,
    由基本尺规作图可知,AD是△ABC的角平分线,
    ∵∠C=90°,DE⊥AB,
    ∴DE=CD=4,
    ∴△ABD的面积=AB×DE=×15×4=30,
    故选:B.
    本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(x-1)1.
    【解析】
    由完全平方公式可得:
    故答案为.
    错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.
    10、 (3,3)
    【解析】
    根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.
    【详解】
    由题意可得如图所示的平面直角坐标系,
    故点C的坐标为(3,3),
    故答案为(3,3).
    本题考查坐标确定位置,解题的关键是明确题意,建立合适的平面直角坐标系.
    11、1
    【解析】
    先求出100名学生中持“赞成”意见的学生人数所占的比例,再用总人数相乘即可.
    【详解】
    解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,
    ∴持“赞成”意见的学生人数=100-30=70名,
    ∴全校持“赞成”意见的学生人数约=2400×=1(名).
    故答案为:1.
    本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.
    12、1
    【解析】
    根据同类二次根式的定义得1+a=4-2a,然后解方程即可.
    【详解】
    解:根据题意得1+a=4-2a,
    解得a=1.
    故答案为:1.
    本题考查了同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
    13、60°
    【解析】
    首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.
    【详解】
    解:△AOB中,OA=OB,∠ABO=30°;
    ∴∠AOB=180°-2∠ABO=120°;
    ∴∠ACB=∠AOB=60°.
    故选A.
    本题考查圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.
    【解析】
    (1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.
    (2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.
    (3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.
    【详解】
    (1)如图1中,作BH⊥x轴于H.
    ∵A(1,0)、C(0,2),
    ∴OA=1,OC=2,
    ∵∠COA=∠CAB=∠AHB=90°,
    ∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,
    ∴∠ACO=∠BAH,
    ∵AC=AB,
    ∴△COA≌△AHB(AAS),
    ∴BH=OA=1,AH=OC=2,
    ∴OH=3,
    ∴B(3,1),
    设直线BC的解析式为y=kx+b,则有,
    解得:,
    ∴;
    (2)如图2中,
    ∵四边形ABMN是平行四边形,
    ∴AN∥BM,
    ∴直线AN的解析式为:,
    ∴,
    ∴,
    ∵B(3,1),C(0,2),
    ∴BC=,
    ∴,
    ∴,
    ∴t=s时,四边形ABMN是平行四边形;
    (3)如图3中,
    如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,
    连接OQ交BC于E,
    ∵OE⊥BC,
    ∴直线OE的解析式为y=3x,
    由,解得:,
    ∴E(,),
    ∵OE=OQ,
    ∴Q(,),
    ∵OQ1∥BC,
    ∴直线OQ1的解析式为y=-x,
    ∵OQ1=OB=,设Q1(m,-),
    ∴m2+m2=10,
    ∴m=±3,
    可得Q1(3,-1),Q3(-3,1),
    当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,
    易知线段OB的垂直平分线的解析式为y=-3x+5,
    由,解得:,
    ∴Q2(,).
    综上所述,满足条件的点Q坐标为:或或或.
    本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
    15、(1)50;20;30;(2)图见解析;(3)2000人。
    【解析】
    (1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;
    (2)根据a的值,补全条形统计图即可;
    (3)由中国诗词大会的百分比乘以5000即可得到结果.
    【详解】
    解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,;
    故答案为:50;20;30;
    (2)中国诗词大会的人数为20人,补全条形统计图,如图所示:
    (3)根据题意得:5000×40%=2000(名).
    则估计该校最喜爱《中国诗词大会》节目的学生有2000名.
    此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.
    16、原式=
    【解析】
    首先把除法化为乘法进行计算,再进一步相减,然后把a的值代入计算
    【详解】
    解:原式=
    =
    =
    =
    =
    当a=1+.时,原式==
    本题考查了分式的化简求值,熟练掌握分母有理化是解题的关键.
    17、
    【解析】
    先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:
    解不等式①得,
    解不等式②得,
    ∴原不等式组的解集是
    本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.
    18、 (1)证明见解析;(2)2.
    【解析】
    (1)先证明△AOB≌△COD,可得OD=OB,从而根据对角线互相平分的四边形是平行四边形可证结论;
    (2)先根据对角线互相垂直的平行四边形是菱形证明四边形ABCD是菱形,然后根据菱形的面积等于对角线乘积的一半计算即可.
    【详解】
    解:(1)∵AB//DC,
    ∴∠1=∠2 , ∠3=∠4
    又∵AO=CO,
    ∴△AOB≌△COD,
    ∴OD=OB,
    ∴四边形ABCD是平行四边形
    (2)∵AC⊥BD,
    ∴平行四边形ABCD是菱形,
    ∴平行四边形ABCD的面积为S=AC×BD=2.
    本题考查了平行四边形的判定,菱形的判定与性质,熟练掌握平行四边形的判定方法和菱形的判定方法是解答本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    解:因为点M(a,2)是一次函数y=2x-3图象上的一点,
    ∴2=2a-3,
    解得a=
    故答案为:.
    20、120°
    【解析】
    根据平行四边形对角相等求解.
    【详解】
    平行四边形ABCD中,∠A=∠C,又,
    ∴∠A=120°,
    故填:120°.
    此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.
    21、1
    【解析】
    试题分析:已知D、E分别是边AB、AC的中点,BC=8,根据三角形的中位线定理得到DE=BC=1.
    考点:三角形中位线定理.
    22、4.1
    【解析】
    直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.
    【详解】
    解:∵菱形的两条对角线分别为6cm和1cm,
    ∴菱形的边长为:=5(cm),
    设菱形的高为:xcm,则5x=×6×1,
    解得:x=4.1.
    故答案为:4.1.
    此题主要考查了菱形的性质,正确得出菱形的边长是解题关键.
    23、2
    【解析】
    由平行四边形的性质可得AB=CD,AD=BC,AD∥BC,根据角平分线的性质及平行线的性质可证得∠CDE=∠DEC,由此可得EC=DC,再由BE=BC-CE=AD-AB即可求得AE的长.
    【详解】
    ∵四边形ABCD为平行四边形
    ∴AB=CD,AD=BC,AD∥BC,
    ∴∠DEC =∠ADE,
    ∵DE为∠ADC的平分线,
    ∴∠CDE=∠ADE,
    ∴∠CDE=∠DEC,
    即EC=DC,
    ∴BE=BC-CE=AD-AB=5-3=2.
    故答案为:2.
    本题考查了角平分线的性质以及平行线的性质、平行四边形的性质等知识,证得EC=DC是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见详解;(2)见详解.
    【解析】
    (1)利用三个内角等于90°的四边形是矩形,即可证明;
    (2)延长AF交BC于M,通过全等得到AB=BM,然后证明四边形EMCG是平行四边形,得到EG=CM,即可得证.
    【详解】
    解:(1)∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠ABC+∠BCD=180°,
    ∵BH,CH分别平分∠ABC与∠BCD,
    ∴∠HBC=∠ABC,∠HCB=∠BCD,
    ∴∠HBC+∠HCB=(∠ABC+∠BCD)=×180°=90°,
    ∴∠H=90°,
    同理∠HEF=∠F=90°,
    ∴四边形EFGH是矩形,
    ∴EG=HF;
    (2)如图,延长AF交BC于M,
    由(1)中可知AE⊥AF,即∠BEA=∠BEM=90°,
    在Rt△ABE和Rt△MBE中,

    ∴△ABE≌△MBE,
    ∴AB=MB,AE=EM,
    由于四边形ABCD是平行四边形,
    ∴∠ABC=∠ADC,AB=CD
    ∵BH,DF分别平分∠ABC与∠ADC,
    ∴∠ABE=∠CDG,
    在Rt△ABE和Rt△CDG中,

    ∴△ABE≌△CDG,
    ∴CG=AE,
    ∴CG=EM,
    由于四边形EFGH是矩形,
    ∴EM∥CG,
    ∴四边形EMCG是平行四边形,
    ∴EG=MC,
    由于MC=BC-BM,
    ∴EG=BC-AB.
    本题考查了矩形的判定,平行四边形的判定和性质,角平分线的定义,熟练掌握判定方法是解题的关键.
    25、(1)四边形为菱形,见解析;(2)
    【解析】
    (1)根据已知矩形性质证明四边形为平行四边形,再根据折叠的性质证明,得出即可得出结论;
    (2)根据折叠特性设未知边,构造勾股定理列方程求解.
    【详解】
    解: 四边形为菱形;
    理由如下:
    四边形为矩形,
    四边形为平行四边形
    由折叠的性质,则
    四边形为菱形,

    .
    由得
    设.
    在,
    解得:,

    .
    此题考查了矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.
    26、(1)90°;(2);(3)△BGC的周长为
    【解析】
    (1)先利用正方形的性质和SAS证明△BCE≌△CDF,可得∠CBE=∠DCF,再利用角的等量代换即可求出结果;
    (2)先根据勾股定理求出BF的长,再利用直角三角形的性质求解即可;
    (3)根据题意可得△BCG的面积与四边形DEGF的面积相等,进一步依据△BCG的面积以及勾股定理,得出BG+CG的长,进而求出其周长.
    【详解】
    解:(1)∵四边形ABCD是正方形,
    ∴BC=CD,∠BCD=∠CDF=90°,
    在△BCE和△CDF中,∵BC=CD,∠BCD=∠CDF,CE=DF,
    ∴△BCE≌△CDF(SAS),
    ∴∠CBE=∠DCF,
    又∵∠BCG+∠DCF=90°,
    ∴∠BCG+∠CBE=90°,
    ∴∠BGC=90°;
    (2)如图,∵CE=1,∴DF=1,∴AF=2,
    在直角△ABF中,由勾股定理得:,
    ∵H为BF的中点,∠BGF=90°,
    ∴;
    (3)∵阴影部分的面积与正方形ABCD的面积之比为2:3,
    ∴阴影部分的面积为×9=6,
    ∴空白部分的面积为9-6=3,
    ∵△BCE≌△CDF,
    ∴△BCG的面积与四边形DEGF的面积相等,均为×3=,
    设BG=a,CG=b,则ab=,∴ab=3,
    又∵a2+b2=32,
    ∴a2+2ab+b2=9+6=15,
    即(a+b)2=15,
    ∴a+b=,即BG+CG=,
    ∴△BCG的周长=+3.
    此题考查了正方形的性质、全等三角形的判定与性质、勾股定理、直角三角形的性质以及三角形面积问题,解题时注意数形结合思想与整体思想的应用.
    题号





    总分
    得分

    相关试卷

    河南省安阳市正一中学2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份河南省安阳市正一中学2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省巨野县九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年山东省巨野县九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map