终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    河南省漯河郾城区六校联考2025届九年级数学第一学期开学调研模拟试题【含答案】

    立即下载
    加入资料篮
    河南省漯河郾城区六校联考2025届九年级数学第一学期开学调研模拟试题【含答案】第1页
    河南省漯河郾城区六校联考2025届九年级数学第一学期开学调研模拟试题【含答案】第2页
    河南省漯河郾城区六校联考2025届九年级数学第一学期开学调研模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省漯河郾城区六校联考2025届九年级数学第一学期开学调研模拟试题【含答案】

    展开

    这是一份河南省漯河郾城区六校联考2025届九年级数学第一学期开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为
    ( )
    A.280B.140C.70D.196
    2、(4分)数据2,6,4,5,4,3的平均数和众数分别是( )
    A.5和4B.4和4C.4.5和4D.4和5
    3、(4分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC= ( )
    A.B.2C.3D.+2
    4、(4分)如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( )
    A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0
    5、(4分)如果关于的分式方程有增根,则增根的值为( )
    A.0B.-1C.0或-1D.不存在
    6、(4分)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
    A.12≤b≤13B.12≤b≤15C.13≤b≤16D.15≤b≤16
    7、(4分)如图,▱ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论
    ①BE⊥AC
    ②四边形BEFG是平行四边形
    ③EG=GF
    ④EA平分∠GEF
    其中正确的是( )
    A.①②③B.①②④C.①③④D.②③④
    8、(4分)若关于x的方程x2-bx+6=0的一根是x=2,则另一根是( )
    A.x=-3B.x=-2C.x=2D.x=3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一组数据3、x、4、8、6,若该组数据的平均数是5,则x的值是______.
    10、(4分)已知 ,那么的值为____________.
    11、(4分)(2014•嘉定区二模)一元二次方程x2=x的解为 .
    12、(4分)如图,菱形的两个顶点坐标为,,若将菱形绕点以每秒的速度逆时针旋转,则第秒时,菱形两对角线交点的坐标为__________.
    13、(4分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴交于A,B两点,分别以点A,B为圆心,大于AB长为半径作圆弧,两弧在第一象限交于点C,若点C的坐标为(m+1,7﹣m),则m的值是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)
    15、(8分)如图1,在平面直角坐标系中,直线AB与x轴、y轴相交于、两点,动点C在线段OA上(不与O、A重合),将线段CB绕着点C顺时针旋转得到CD,当点D恰好落在直线AB上时,过点D作轴于点E.
    (1)求证,;
    (2)如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;
    (3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标,若不存在,请说明理由.
    16、(8分)某大型物件快递公司送货员每月的工资由底薪加计件工资两部分组成,计件工资与送货件数成正比例.有甲乙两名送货员,如果送货量为x件时,甲的工资是y1(元),乙的工资是y2(元),如图所示,已知甲的每月底薪是800元,每送一件货物,甲所得的工资比乙高2元
    (1)根据图中信息,分别求出y1和y2关于x的函数解析式;(不必写定义域)
    (2)如果甲、乙两人平均每天送货量分别是12件和14件,求两人的月工资分别是多少元?(一个月为30天)
    17、(10分)为了满足学生的物质需求,我市某中学到红旗超市准备购进甲、乙两种绿色袋装食品.其中甲、乙两种绿色袋装食品的进价和售价如下表:
    已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.
    (1)求的值;
    (2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于5200元,且不超5280元,问该红旗超市有几种进货方案?
    (3)在(2)的条件下,该红旗超市准备对甲种袋装食品进行优惠促销活动,决定对甲种袋装食品每袋优惠元出售,乙种袋装食品价格不变.那么该红旗超市要获得最大利润应如何进货?
    18、(10分)如图,、是的对角线上的两点,且,,连接、、、.
    (1)求证:四边形为平行四边形;
    (2)若,,求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去记正方形ABCD的边为,按上述方法所作的正方形的边长依次为、、、,根据以上规律写出的表达式______.
    20、(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为4,则第n个矩形的面积为_____.
    21、(4分)将正比例函数国象向上平移个单位。则平移后所得图图像的解析式是_____.
    22、(4分)如图,点P为函数y=(x>0)图象上一点过点P作x轴、y轴的平行线,分别与函数y(x>0)的图象交于点A,B,则△AOB的面积为_____.
    23、(4分)如图,在Rt△ABC中,已知∠BAC=90°,点D、E、F分别是三边的中点,若AF=3cm,则DE=_____cm.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)定义:如图(1),,,,四点分别在四边形的四条边上,若四边形为菱形,我们称菱形为四边形的内接菱形.
    动手操作:
    (1)如图2,网格中的每个小四边形都为正方形,每个小四边形的顶点叫做格点,由个小正方形组成一个大正方形,点、在格点上,请在图(2)中画出四边形的内接菱形;
    特例探索:
    (2)如图3,矩形,,点在线段上且,四边形是矩形的内接菱形,求的长度;
    拓展应用:
    (3)如图4,平行四边形,,,点在线段上且,
    ①请你在图4中画出平行四边形的内接菱形,点在边上;
    ②在①的条件下,当的长最短时,的长为__________
    25、(10分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
    (1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;
    (2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?
    (3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?
    26、(12分)如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=12m,CD=13m,AD=3m.
    (1)试说明BD⊥BC;
    (2)求这块土地的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    解:设小长方形的长、宽分别为x、y,
    依题意得:,
    解得:,
    则矩形ABCD的面积为7×2×5=1.
    故选C.
    【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.
    2、B
    【解析】
    根据平均数和众数的概念求解.
    【详解】
    这组数据的平均数是:(2+6+4+5+4+3)=4;
    ∵4出现了2次,出现的次数最多,
    ∴这组数据的众数是4;
    故选B.
    本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.
    3、C
    【解析】
    试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.
    考点:角平分线的性质和中垂线的性质.
    4、B
    【解析】
    试题分析:根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.
    解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,
    显然,这些点在点A与点B之间.
    故选B.
    5、A
    【解析】
    先把分式方程化成整式方程,再解整式方程求出x的值,根据方程有增根得出或,解出k的值即可得出答案.
    【详解】
    又方程有增根
    ∴或
    无解或k=0
    ∴k=0
    ∴增根的值为0
    故答案选择A.
    本题考查的是分式方程的增根问题,属于基础题型,解题关键是根据增根得出整式方程有解,而分式方程无解,即整式方程求出的解使得分式方程的分母等于0.
    6、D
    【解析】
    此题涉及的知识点是解直角三角形,根据题目中底面半径是5,高是12,可以算出另一边,吸管在罐外部分剩余3,不同放置就可以算出总长
    【详解】
    底面半径是5,高是12,则吸管最长放在罐里的长度为13,加上罐外的3,总长为16;如果吸管竖直放置,则罐里最短长为12,加上罐外3总长为15,所以吸管总长范围为:
    故选D
    此题重点考察学生对直角三角形的解的应用,勾股定理是解题的关键
    7、B
    【解析】
    由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断③错误,由BG=EF,BG∥EF∥CD可证四边形BEFG是平行四边形,可得②正确.由平行线的性质和等腰三角形的性质可判断④正确.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,
    又∵BD=2AD,
    ∴OB=BC=OD=DA,且点E 是OC中点,
    ∴BE⊥AC,
    故①正确,
    ∵E、F分别是OC、OD的中点,
    ∴EF∥CD,EF=CD,
    ∵点G是Rt△ABE斜边AB上的中点,
    ∴GE=AB=AG=BG,
    ∴EG=EF=AG=BG,无法证明GE=GF,
    故③错误,
    ∵BG=EF,BG∥EF∥CD,
    ∴四边形BEFG是平行四边形,
    故②正确,
    ∵EF∥CD∥AB,
    ∴∠BAC=∠ACD=∠AEF,
    ∵AG=GE,
    ∴∠GAE=∠AEG,
    ∴∠AEG=∠AEF,
    ∴AE平分∠GEF,故④正确,
    故选B.
    本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
    8、D
    【解析】
    把x=2代入方程x2-bx+6=0,求出b,得出方程,再求出方程的解即可.
    【详解】
    解:把x=2代入方程x2-bx+6=0得:4-2b+6=0,
    解得:b=5,
    即方程为x2-5x+6=0,
    解得:x=2或3,
    即方程的另一个根是x=3,
    故选:D.
    此题考查解一元二次方程,一元二次方程的解和根与系数的关系,能求出b的值是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据算术平均数的计算方法列方程求解即可.
    【详解】
    解:由题意得:
    解得:.
    故答案为1.
    此题考查算术平均数的意义和求法,掌握计算方法是解决问题的关键.
    10、1
    【解析】
    根据非负数的性质先求出与的值,再根据有理数的乘方运算进一步计算即可.
    【详解】
    ∵,
    ∴,,
    ∴,,
    ∴,
    故答案为:1.
    本题主要考查了非负数的性质以及有理数的乘方运算,熟练掌握相关概念是解题关键.
    11、x1=0,x2=1.
    【解析】
    试题分析:首先把x移项,再把方程的左面分解因式,即可得到答案.
    解:x2=x,
    移项得:x2﹣x=0,
    ∴x(x﹣1)=0,
    x=0或x﹣1=0,
    ∴x1=0,x2=1.
    故答案为:x1=0,x2=1.
    考点:解一元二次方程-因式分解法.
    12、(-,0)
    【解析】
    先计算得到点D的坐标,根据旋转的性质依次求出点D旋转后的点坐标,得到变化的规律即可得到答案.
    【详解】
    ∵菱形的两个顶点坐标为,,
    ∴对角线的交点D的坐标是(2,2),
    ∴,
    将菱形绕点以每秒的速度逆时针旋转,
    旋转1次后坐标是(0, ),
    旋转2次后坐标是(-2,2),
    旋转3次后坐标是(-,0),
    旋转4次后坐标是(-2,-2),
    旋转5次后坐标是(0,-),
    旋转6次后坐标是(2,-2),
    旋转7次后坐标是(,0),
    旋转8次后坐标是(2,2)
    旋转9次后坐标是(0,,
    由此得到点D旋转后的坐标是8次一个循环,
    ∵,
    ∴第秒时,菱形两对角线交点的坐标为(-,0)
    故答案为:(-,0).
    此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D的坐标依次求出旋转后的坐标得到变化规律是解题的关键.
    13、3
    【解析】
    在y=﹣x+3中,令x=0则y=3,令y=0,则x=3,
    ∴OA=3,OB=3,
    ∴由题意可知,点C在∠AOB的平分线上,
    ∴m+1=7﹣m,
    解得:m=3.
    故答案为3.
    三、解答题(本大题共5个小题,共48分)
    14、 (10+10)海里
    【解析】
    利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,如图,设BC=x海里,则AC=AB+BC=(20+x)海里.解△PBC,得出PC=BC=x海里,解Rt△APC,得出AC=PC•tan60°=x,根据AC不变列出方程x=20+x,解方程即可.
    【详解】
    如图,AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,设BC=x海里,则AC=AB+BC=(20+x)海里.
    在△PBC中,∵∠BPC=45°,
    ∴△PBC为等腰直角三角形,
    ∴PC=BC=x海里,
    在Rt△APC中,∵tan∠APC=,
    ∴AC=PC•tan60°=x,
    ∴x=20+x,
    解得x=10+10,
    则PC=(10+10)海里.
    答:轮船航行途中与灯塔P的最短距离是(10+10)海里.
    本题考查了解直角三角形的应用-方向角:在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.
    15、(1),见解析;(2)D(3,1),平移的距离是个单位,见解析;(3)存在满足条件的点Q,其坐标为或或,见解析.
    【解析】
    (1)根据AAS或ASA即可证明;
    (2)首先求直线AB的解析式,再求出出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;
    (3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,求出直线PC的解析式,可得点P坐标,点C向左平移1个单位,向上平移个单位得到P,推出点D向左平移1个单位,向上平移个单位得到Q,再根据对称性可得Q′、Q″的坐标.
    【详解】
    (1)∵,
    ∴,,
    ∴,
    ∵,

    (2)∵直线AB与x轴,y轴交于、两点
    ∴直线AB的解析式为
    ∵,
    ∴,设,则
    把代入得到,

    ∵,
    ∴直线BC的解析式为,
    设直线的解析式为,把代入得到
    ∴直线的解析式为,
    ∴,

    ∴平移的距离是个单位.
    (3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,
    易知直线PC的解析式为y=-x+,
    ∴P(0,),
    ∵点C向左平移1个单位,向上平移个单位得到P,
    ∴点D向左平移1个单位,向上平移个单位得到Q,
    ∴Q(2,),
    当CD为对角线时,四边形PCQ″D是平行四边形,可得Q″,
    当四边形CDP′Q′为平行四边形时,可得Q′,
    综上所述, 存在满足条件的点Q,其坐标为或或
    本题考查一次函数综合题、平行四边形的判定和性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移、对称等性质解决问题,属于中考压轴题.
    16、(1)y1=20x+800;y2=18x+1200;(2)y1=8000元;y2=8760元.
    【解析】
    (1)设y1关于x的函数解析式为y1=kx+800,将(200,4800)代入,利用待定系数法即可求出y1=20x+800;根据每送一件货物,甲所得的工资比乙高2元,可设y2关于x的函数解析式为y2=18x+b,将(200,4800)代入,利用待定系数法即可求出y2=18x+1200;
    (2)根据甲、乙两人平均每天送货量分别是12件和14件,得出甲、乙两人一个月送货量分别是12×30=360件和14×30=420件.再把x=360代入y1=20x+800,x=420代入y2=18x+1200,计算即可求解.
    【详解】
    (1)设y1关于x的函数解析式为y1=kx+800,
    将(200,4800)代入,
    得4800=200k+800,解得k=20,
    即y1关于x的函数解析式为y1=20x+800;
    ∵每送一件货物,甲所得的工资比乙高2元,
    而每送一件货物,甲所得的工资是20元,
    ∴每送一件货物,乙所得的工资比乙高18元.
    设y2关于x的函数解析式为y2=18x+b,
    将(200,4800)代入,
    得4800=18×200+b,解得b=1200,
    即y2关于x的函数解析式为y2=18x+1200;
    (2)如果甲、乙两人平均每天送货量分别是12件和14件,
    那么甲、乙两人一个月送货量分别是12×30=360件和14×30=420件.
    把x=360代入y1=20x+800,得y1=20×360+800=8000(元);
    把x=420代入y2=18x+1200,得y2=18×420+1200=8760(元).
    本题考查了一次函数的应用,利用待定系数法求直线的解析式,以及代数式求值,读懂题目信息,理解函数图象是解题的关键.
    17、(1);(2)共有17种方案;(3)当时,有最大值,即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.
    【解析】
    (1)根据“用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同”列出方程并解答;
    (2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(800-x)袋,然后根据总利润列出一元一次不等式组解答;
    (3)设总利润为W,根据总利润等于两种绿色袋装食品的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.
    【详解】
    解:(1)依题意得:
    解得:,
    经检验是原分式方程的解;
    (2)设购进甲种绿色袋装食品袋,表示出乙种绿色袋装食品袋,根据题意得,
    解得:,
    ∵是正整数,,
    ∴共有17种方案;
    (3)设总利润为,则,
    ①当时,,随的增大而增大,
    所以,当时,有最大值,
    即此时应购进甲种绿色袋装食品256袋,乙种绿色袋装食品544袋;
    ②当时,,(2)中所有方案获利都一样;
    ③当时,,随的增大而减小,
    所以,当时,有最大值,
    即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.
    本题考查了分式方程与一元一次不等式组的综合应用。
    18、(1)证明见解析 (2)
    【解析】
    (1)根据平行四边形的性质,证明,即可解答.
    (2)由(1)得到,,再利用勾股定理即可解答.
    【详解】
    (1)证明:
    ∵,,
    ∴.
    ∴.
    在中,,,
    ∴.
    ∴.
    ∴.
    ∴四边形是平行四边形.
    (2)∵四边形是平行四边形,
    ∴,.
    在中,
    .
    ∴.
    此题考查平行四边形的判定与性质,勾股定理,解题关键在于判定三角形全等.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据正方形对角线等于边长的倍得出规律即可.
    【详解】
    由题意得,a1=1,
    a2=a1=,
    a3=a2=()2,
    a4=a3=()3,
    …,
    an=an-1=()n-1.
    =[()n-1]2=
    故答案为:
    本题主要考查了正方形的性质,熟记正方形对角线等于边长的倍是解题的关键,要注意的指数的变化规律.
    20、
    【解析】
    第二个矩形的面积为第一个矩形面积的,第三个矩形的面积为第一个矩形面积的,依此类推,第n个矩形的面积为第一个矩形面积的.
    【详解】
    解:第二个矩形的面积为第一个矩形面积的;
    第三个矩形的面积是第一个矩形面积的;

    故第n个矩形的面积为第一个矩形面积的.
    又∵第一个矩形的面积为4,
    ∴第n个矩形的面积为.
    故答案为:.
    本题考查了矩形、菱形的性质.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
    21、y=-1x+1
    【解析】
    根据一次函数图象平移的性质即可得出结论.
    【详解】
    解:正比例函数y=-1x的图象向上平移1个单位,则平移后所得图象的解析式是:y=-1x+1.
    故答案为:y=-1x+1.
    本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
    22、1
    【解析】
    根据题意作AD⊥x轴于D,设PB⊥x轴于E,,设出P点的坐标,再结合S△AOB=S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,代入计算即可.
    【详解】
    解:作AD⊥x轴于D,设PB⊥x轴于E,
    ∵点P为函数y=(x>0)图象上一点,过点P作x轴、y轴的平行线,
    ∴设P(m,),则A(2m,),B(m,),
    ∵点A、B在函数y=(x>0)的图象上,
    ∴S△OBE=S△OAD,
    ∵S△AOB=S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,
    ∴S△AOB=(+)(2m﹣m)=1,
    故答案为1.
    本题主要考查反比例函数的面积问题,这是考试的重点知识,往往结合几何问题求解.
    23、3
    【解析】
    ∵在直角三角形中,斜边上的中线等于斜边的一半,
    ∴BC=2AF=6cm,
    又∵DE是△ABC的中位线,
    ∴DE=BC=3cm.
    故答案为3.
    本题考查直角三角形斜边上的中线和三角形的中位线. 在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,且等于第三边的一半.
    二、解答题(本大题共3个小题,共30分)
    24、(1)详见解析;(2)3;(3)①详见解析;②的长为
    【解析】
    (1)以EF为边,作一个菱形,使其各边长都为 ;
    (2)如图2,连接HF,证明△DHG≌△BFE(AAS),可得CG=3;
    (3)①根据(2)中可知DG=BE=2,根据对角线垂直平分作内接菱形EFGH;
    ②如图5,当F与C重合,则A与H重合时,此时BF的长最小,就是BC的长,根据直角三角形30度角的性质和勾股定理计算可得结论.
    【详解】
    (1)如图2所示,菱形即为所求;
    (2)如图3,连接,
    四边形是矩形,,,,,
    四边形是菱形,,,,,即,
    ,;
    (3)①如图4所示,由(2)知:,,
    作法:作,连接,再作的垂直平分线,交、于、,得四边形即为所求作的内接菱形;
    ②如图5,当与重合,则与重合时,此时的长最小,过作于,中,,,,,
    四边形是菱形,,

    即当的长最短时,的长为
    本题是四边形的综合题,主要考查新定义−四边形ABCD的内接菱形,基本作图−线段的垂直平分线,菱形,熟练掌握基本作图及平行四边形、菱形和矩形的性质是解题的关键.
    25、(1) y =﹣200x+1
    (2)2
    (3)2
    【解析】
    (1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可.
    (2)根据每天获取利润为14400元,则y=14400,求出即可.
    (3)根据每天获取利润不低于15200元即y≥15200,求出即可.
    【详解】
    解:(1)根据题意得:y=12x×100+10(10﹣x)×180=﹣200x+1.
    (2)当y=14400时,有14400=﹣200x+1,解得:x=2.
    ∴要派2名工人去生产甲种产品.
    (3)根据题意可得,y≥15200,即﹣200x+1≥15200,解得:x≤4,
    ∴10﹣x≥2,
    ∴至少要派2名工人去生产乙种产品才合适.
    26、 (1)见解析;(2)36m².
    【解析】
    (1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(2)根据两个直角三角形的面积即可求解.
    【详解】
    解:(1)
    在Rt△ABD中,∠BAD=90°,AB=4m,AD=3m,由勾股定理得:BD=5m,
    ∵BC=12m,CD=13m,BD=5m.
    ∴BD2+BC2=DC2,
    ∴∠DBC=90°,
    即BD⊥BC;
    (2)四边形ABCD的面积是S△ABD+S△BDC=.
    本题考查了勾股定理, 勾股定理的逆定理,牢牢掌握这些定理是解答本题的要点.
    题号





    总分
    得分


    进价(元/袋)
    售价(元/袋)
    20
    13

    相关试卷

    河南省漯河郾城区六校联考2025届九年级数学第一学期开学学业质量监测试题【含答案】:

    这是一份河南省漯河郾城区六校联考2025届九年级数学第一学期开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖南省岳阳市城区十四校联考数学九年级第一学期开学调研模拟试题【含答案】:

    这是一份2025届湖南省岳阳市城区十四校联考数学九年级第一学期开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年河南省漯河郾城区六校联考九年级数学第一学期期末达标检测试题含答案:

    这是一份2023-2024学年河南省漯河郾城区六校联考九年级数学第一学期期末达标检测试题含答案,共7页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map