河南省平顶山2024年九上数学开学质量跟踪监视试题【含答案】
展开
这是一份河南省平顶山2024年九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,点P(2,﹣3)关于y轴对称的点的坐标是( )
A.(﹣2,﹣3)B.(﹣2,3)C.(2,3)D.(2,﹣3)
2、(4分)下列各组数不可能是一个三角形的边长的是( )
A.1,2,3B.2,3,4C.3,4,5D.4,5,6
3、(4分)如图,在四边形中,是边的中点,连接并延长,交的延长线于点,.添加一个条件使四边形是平行四边形,你认为下面四个条件中可选择的是( )
A.B.C.D.
4、(4分)下列二次概式中,最简二次根式是( )
A.B.C.D.
5、(4分)如图①,点从菱形的顶点出发,沿以的速度匀速运动到点.图②是点运动时,的面积()随着时间()变化的关系图象,则菱形的边长为( )
A.B.C.D.
6、(4分)已知,则( )
A.B.C.D.
7、(4分)如图,y1,y2分别表示燃油汽车和纯电动汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x元,可列方程为( )
A.B.
C.D.
8、(4分)用反证法证明命题“四边形中至少有一个角不小于直角”时应假设( )
A.没有一个角大于直角 B.至多有一个角不小于直角
C.每一个内角都为锐角 D.至少有一个角大于直角
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简:___________.
10、(4分)若m2﹣n2=6,且m﹣n=2,则m+n=_________
11、(4分)计算:_________
12、(4分)当分式有意义时,x的取值范围是__________.
13、(4分)已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_____cm1.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表
请根据以上图表提供的信息,解答下列问题:
(1)这次共调查了 名学生;表中的数m= ,n= .
(2)请补全频数直方图;
(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是 .
15、(8分)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOD的面积.
16、(8分)如图,在Rt△ABC中,∠C=90°,E是AB上的点,且AE=AC,DE⊥AB交BC于D,AC=6,BC=8,CD=1.
(1)求DE的长;
(2)求△ADB的面积.
17、(10分)如图,AC是平行四边形ABCD的一条对角线,过AC中点O的直线分别交 AD,BC 于点 E,F.
(1)求证:四边形AECF是平行四边形;
(2)当 EF 与 AC 满足什么条件时,四边形 AECF 是菱形?并说明理由.
18、(10分)如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.
(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;
(2)如图2,若DA=DE,求证:BF+DF=AF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F=30°,DE=1,则EF的长是_____.
20、(4分)化简的结果为________.
21、(4分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.
22、(4分)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为15人,频率为0.3,那么被调查的学生人数为________.
23、(4分)对于一次函数y=(a+2)x+1,若y随x的增大而增大,则a的取值范围________
二、解答题(本大题共3个小题,共30分)
24、(8分)化简代数式:,并求当 x=2012 时,代数式的值.
25、(10分)如图是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上
(1)在图(1)中,点P在小正方形的顶点上,作出点P关于直线AC的对称点Q
(2)在图(2)中,画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上
(3)在图(3)中,B是AC的中点,作线段AB的垂直平分线,要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹
26、(12分)某校为了解八年级学生课外阅读情况,随机抽取20名学生平均每周用于课外阅读读的时间(单位:),过程如下:
(收集数据)
(整理数据)
(分析数据)
请根据以上提供的信息,解答下列问题:
(1)填空:______,______,______,______;
(2)如果每周用于课外读的时间不少于为达标,该校八年级现有学生200人,估计八年级达标的学生有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
【详解】
解:点P(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3),
故选:A.
此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.
2、A
【解析】
试题分析:看哪个选项中两条较小的边的和不大于最大的边即可.
解:A、1+2=3,不能构成三角形;
B、2+3>4,能构成三角形;
C、3+4>5,能构成三角形;
D、4+5>6,能构成三角形.
故选A.
考点:三角形三边关系.
3、D
【解析】
把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.
【详解】
添加A、,无法得到AD∥BC或CD=BA,故错误;
添加B、,无法得到CD∥BA或,故错误;
添加C、,无法得到,故错误;
添加D、
∵,,,
∴,,∴,
∵,∴,
∴四边形是平行四边形.
故选D.
本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
4、C
【解析】
根据最简二次根式的定义即可求解.
【详解】
A. =2,故错误;
B. =根号里含有小数,故错误;
C. 为最简二次根式,正确;
D. =2,故错误;
故选C.
此题主要考查最简二次根式定义,解题的关键是熟知最简二次根式的特点.
5、C
【解析】
根据图②可以发现点E运动5秒后△ABE的面积停止了变化,且为最大面积,由此结合图①,当点E在CD上运动时,△ABE面积最大,从而得出AC=5,CD=,然后根据△ABE最大面积为2得出△ABC面积为2,所以菱形ABCD面积为4,从而再次得出△ABC的高为4,然后进一步利用勾股定理求出菱形边长即可.
【详解】
如图,过C点作AB垂线,交AB于E,
由题意得:△ABC面积为2,AC=5,DC=,
∵四边形ABCD是菱形,
∴AB=DC=BC=,
∴△ABC面积==2,
∴CE=4,
∴在Rt△AEC中,AE==3,
∴BE=,
∴在Rt△BEC中,,
即,
解得:.
∴菱形边长为.
故选:C.
本题主要考查了菱形与三角形动点问题的综合运用,熟练掌握相关性质是解题关键.
6、B
【解析】
先利用二次式的乘法法则与二次根式的性质求出m=2= ,再利用夹值法即可求出m的范围.
【详解】
解:=2=,
∵25<28<36,
∴.
故选:B.
本题考查了二次根式的运算,二次根式的性质,估算无理数的大小,将m化简为是解题的键.
7、C
【解析】
设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,根据路程=总费用÷每千米所需费用结合路程相等,即可得出关于x的分式方程,此题得解.
【详解】
解:设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,
根据题意得:.
故选:C.
本题考查了由实际问题抽象出分式方程以及函数的图象,找准等量关系,正确列出分式方程是解题的关键.
8、C
【解析】
至少有一个角不小于90°的反面是每个内角都为锐角,据此即可假设.
【详解】
解:反证法的第一步先假设结论不成立,即四边形的每个内角都为锐角.
故选C.
本题结合角的比较考查反证法,解答此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据二次根式的乘法,可得第二个空的答案;
【详解】
;
故答案为:.
此题考查二次根式的性质与化简,解题关键在于掌握运算法则.
10、3
【解析】
利用平方差公式得到(m+n)(m-n)=6,然后把m-n=2代入计算即可.
【详解】
∵,
∴m+n=3.
11、1
【解析】
根据同分母的分式相加减的法则计算即可.
【详解】
原式=.
故答案为:1.
本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.
12、
【解析】
分式有意义的条件为,即可求得x的范围.
【详解】
根据题意得:,
解得:.
答案为:
本题考查了分式有意义的条件,熟练掌握分母不为0是解题的关键.
13、14
【解析】
根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.
【详解】
解:如图,在菱形ABCD中,BD=2.
∵菱形的周长为10,BD=2,
∴AB=5,BO=3,
∴ AC=3.
∴面积
故答案为 14.
此题考查了菱形的性质及面积求法,难度不大.
三、解答题(本大题共5个小题,共48分)
14、(1)200,90,0.30;(2)见解析;(3)54°.
【解析】
(1)用分组60≤x<70的频数除以频率可得总数,用总数乘以0.45可求得m的值,用60除以总数可求得n的值;
(2)根据(1)中m的值画出直方图即可;
(3)根据圆心角=360°×百分比即可解决问题.
【详解】
解:(1)30÷0.15=200,
m=200×0.45=90,
n==0.30,
故答案为:200,90,0.30;
(2)频数直方图如图所示,
(3)360°×=54°,
故答案为:54°.
本题考查了频数分布表、频数分布直方图,读懂统计图表,从中得到必要的解题信息是解题的关键.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
15、(1)y=x+1;(2)C(0,1);(3)1
【解析】
试题分析:(1)首先根据正比例函数解析式求得m的值,再进一步运用待定系数法求得一次函数的解析式;
(2)根据(1)中的解析式,令x=0求得点C的坐标;
(3)根据(1)中的解析式,令y=0求得点D的坐标,从而求得三角形的面积.
试题解析:
(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),
∴2m=2,
m=1.
把(1,2)和(-2,-1)代入y=kx+b,得
解得:
则一次函数解析式是y=x+1;
(2)令x=0,则y=1,即点C(0,1);
(3)令y=0,则x=-1.
则△AOD的面积=.
【点睛】运用了待定系数法求函数解析式、直线与坐标轴的交点的求法.
16、(1)1;(2)15
【解析】
(1)通过证明,即可得出DE的长;
(2)根据三角形面积公式求解即可.
【详解】
(1)∵DE⊥AB
∴
∴在中
∴
∴
(2)∵BC=8,CD=1
∴
∴
本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理、三角形面积公式是解题的关键.
17、(1)见解析;(2)当EF⊥AC时,四边形 AECF 是菱形,理由见解析
【解析】
(1)连接AF,CE,证明△AOE≌△COF,得到AE=CF,利用一组对边平行且相等的四边形是平行四边形;
(2)根据对角线互相垂直的平行四边形是菱形,即可得出结论.
【详解】
(1)如图,连接AF,CE,
∵四边形ABCD是平行四边形
∴AD∥BC
∴∠AEO=∠CFO
又∵点O为AC的中点
∴OA=OC
在△AOE和△COF中,
∵∠AEO=∠CFO,∠AOE=∠COF,OA=OC
∴△AOE≌△COF(AAS)
∴AE=CF
又∵AE∥CF
∴四边形AECF是平行四边形
(2)当EF⊥AC时,四边形 AECF 是菱形,理由如下:
∵四边形AECF是平行四边形,EF⊥AC
∴四边形 AECF 是菱形
本题考查了平行四边形的判定与性质,菱形的判定,熟练掌握平行四边形的判定定理与菱形的判定定理是解题的关键.
18、 (1)AB=2;(1)证明见解析.
【解析】
(1)设BM=x,则CM=1x,BC=BA=3x;在Rt△ABM中,E为斜边AM中点,根据直角三角形斜边的中线等于斜边的一半可得AM=1BE=1.由勾股定理可得AM1=MB1+AB1,即可得30=x1+9x1,解得x=1.所以AB=3x=2;(1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.证明△ABF≌△ADH,根据全等三角形的性质可得AF=AH,BF=DH.再由Rt△FAH是等腰直角三角形,可得HF=AF.由HF=DH+DF=BF+DF,可得BF+DF=AF.
【详解】
解:(1)设BM=x,则CM=1x,BC=3x,
∵BA=BC,
∴BA=3x.
在Rt△ABM中,E为斜边AM中点,
∴AM=1BE=1.
由勾股定理可得AM1=MB1+AB1,
即30=x1+9x1,解得x=1.
∴AB=3x=2.
(1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.
∵DF平分∠CDE,
∴∠1=∠1.
∵DE=DA,DP⊥AF
∴∠3=∠3.
∵∠1+∠1+∠3+∠3=90°,
∴∠1+∠3=35°.
∴∠DFP=90°﹣35°=35°.
∴AH=AF.
∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,
∴∠BAF=∠DAH.
又AB=AD,
∴△ABF≌△ADH(SAS).
∴AF=AH,BF=DH.
∵Rt△FAH是等腰直角三角形,
∴HF=AF.
∵HF=DH+DF=BF+DF,
∴BF+DF=AF.
本题是四边形的综合题,考查了正方形的性质、勾股定理、全等三角形的判定与性质及等腰直角三角形的性质等知识点,熟练运用相关知识是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE=EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.
【详解】
解:如图:连接BE
∵AB的垂直平分线DE交BC的延长线于F,
∴AE=BE,∠A+∠AED=90°,
∵在Rt△ABC中,∠ACB=90°,
∴∠F+∠CEF=90°,
∵∠AED=∠FEC,
∴∠A=∠F=30°,
∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,
∴∠CBE=∠ABC﹣∠ABE=30°,
∴∠CBE=∠F,
∴BE=EF,
在Rt△BED中,BE=1DE=1×1=1,
∴EF=1.
故答案为:1.
本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.
20、
【解析】
首先把分子、分母分解因式,然后约分即可.
【详解】
解:==
本题主要考查了分式的化简,正确进行因式分解是解题的关键.
21、8.
【解析】
直接利用菱形的性质结合勾股定理得出菱形的另一条对角线的长,进而利用菱形面积求法得出答案.
【详解】
如图所示:
∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,
∴可得AD=AB,故△ABD是等边三角形,
则AB=AD=4,
故BO=DO=2,
则AO=,
故AC=4,
则菱形ABCD的面积是:×4×4=8.
故答案为:8.
此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.
22、50
【解析】
根据频数与频率的数量关系即可求出答案.
【详解】
解:设被调查的学生人数为x,
∴,
∴x=50,
经检验x=50是原方程的解,
故答案为:50
本题考查频数与频率,解题的关键是正确理解频数与频率的关系,本题属于基础题型.
23、a>-1
【解析】
一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.
【详解】
解:根据一次函数的性质,对于y=(a+1)x+1,
当a+1>0时,即a>-1时,y随x的增大而增大.
故答案是a>-1.
本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
二、解答题(本大题共3个小题,共30分)
24、1
【解析】
原式第一项被除数分子利用完全平方公式分解因式,分母利用平方差公式分解因式,除法分子提取x分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后合并得到最简结果,将x的值代入计算,即可求出值.
【详解】
原式=
当x=2012时,原式=1.
本题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.
25、(1)见解析;(2)见解析;(3)见解析
【解析】
(1)利用数形结合的思想解决问题即可.
(2)构造边长分别为,的矩形即可.
(3)取格点M,N,作直线MN交AC于E,取格点F,作直线EF,直线EF 即为所求.
【详解】
解:
(1)如图1所示.Q为所求
(2)如图2所示,矩形ABCD为所求
(3)取格点M,N,作直线MN交AC于E,取格点F,作直线EF,直线EF即为所求
本题主要考查了线段垂直平分线的性质,矩形的判定与性质,作图-轴对称变换,掌握线段垂直平分线的性质,矩形的判定与性质,作图-轴对称变换是解题的关键.
26、(1)a=5,b=4,m=81,n=8;(2)120人.
【解析】
根据中位数、众数的定义可以填表格,利用样本和总体之间的比例关系可以估计或计算得到(1)(2)结果.
【详解】
(1)由统计表收集数据可知,,,;
(2)(人).
答:估计达标的学生有120人.
此题考查中位数、众数的定义,用样本估计总体,解题关键在于看懂图中数据
题号
一
二
三
四
五
总分
得分
批阅人
分数段
频数
频率
60≤x<70
30
0.15
70≤x<80
m
0.45
80≤x<90
60
n
90≤x<100
20
0.1
30
60
81
50
40
110
130
146
90
100
60
81
120
140
70
81
10
20
100
81
课外阅读时间
等级
人数
3
8
平均数
中位数
众数
80
相关试卷
这是一份河南省新乡市长垣县2025届九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,四象限,则k的取值可能是,解答题等内容,欢迎下载使用。
这是一份河南省南阳市名校2025届数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届河南省原阳县数学九上开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。