河南省新密市2024-2025学年数学九年级第一学期开学经典试题【含答案】
展开
这是一份河南省新密市2024-2025学年数学九年级第一学期开学经典试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( )
A.k>3B.0<k≤3C.0≤k<3D.0<k<3
2、(4分)如图,P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列三个结论:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP.其中正确结论的序号是( )
A.①②B.①③C.②③D.①②③
3、(4分)一次函数的图象与轴、轴分别交于点,,点,分别是,的中点,是上一动点.则周长的最小值为( )
A.4B.C.D.
4、(4分)直角三角形的面积为 ,斜边上的中线为 ,则这个三角形周长为 ( )
A.B.
C.D.
5、(4分)若的平均数是5,则的平均数是( )
A.5B.6C.7D.8
6、(4分)在下列汽车标志中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
7、(4分)如图,、分别是、的中点,过点作∥交的延长线于点,则下列结论正确的是 ( )
A.B.
C. <D.>
8、(4分)下列命题的逆命题不正确的是( )
A.若,则B.两直线平行,内错角相等
C.等腰三角形的两个底角相等D.对顶角相等
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,一次函数和函数的图象交于A、B两点.利用函数图象直接写出不等式的解集是____________.
10、(4分)如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.
11、(4分)方程的解是________.
12、(4分)在英文单词 believe 中,字母“e”出现的频率是_______.
13、(4分)将长为20cm、宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x之间的关系式为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,BC=10cm,AB=6cm,点Q从点A出发以1 cm/s的速度向点D运动,点P从点B出发以2 cm/s的速度向点C运动,P,Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s)
(1)直接写出:QD=______cm,PC=_______cm;(用含t的式子表示)
(2)当t为何值时,四边形PQDC为平行四边形?
(3)若点P与点C不重合,且DQ≠DP,当t为何值时,△DPQ是等腰三角形?
15、(8分)已知在△ABC中,AB=1,BC=4,CA=.
(1)分别化简4,的值.
(2)试在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上(每个小方格的边长为1).
(3)求出△ABC的面积.
16、(8分)已知在线段AB上有一点C(点C不与A、B重合且AC>BC),分别以AC、BC为边作正方形ACED和正方形BCFG,其中点F在边CE上,连接AG.
(1)如图1,若AC=7,BC=5,则AG=______;
(2)如图2,若点C是线段AB的三等分点,连接AE、EG,求证:△AEG是直角三角形.
17、(10分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:
甲:79,86,82,85,83.
乙:88,81,85,81,80.
请回答下列问题:
(1)甲成绩的中位数是______,乙成绩的众数是______;
(2)经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.
18、(10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若数据,,1,的平均数为0,则__________.
20、(4分)一次函数与轴的交点坐标为__________.
21、(4分)如图,在中,对角线,相交于点,添加一个条件判定是菱形,所添条件为__________(写出一个即可).
22、(4分)已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.
23、(4分)若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形ABCD中,E是AD上任意一点,于F点,于G点.
求证:.
25、(10分)某种商品的标价为500元/件,经过两次降价后的价格为320元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该商品进价为280元/件,两次降价共售此种商品100件,为使两次降价销售的总利润不少于8000元,则第一次降价后至少要售出这种商品多少件?
26、(12分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)中,,将沿翻折至,连结.
结论1:与重叠部分的图形是等腰三角形;
结论2:.
试证明以上结论.
(应用与探究)
在中,已知,,将沿翻折至,连结.若以、、、为顶点的四边形是正方形,求的长.(要求画出图形)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像的性质:可知k>0,b>0,在一二三象限;k>0,b<0,在一三四象限;k<0,b>0,在一二四象限;k<0,b<0,在二三四象限.因此由图象经过第二、三、四象限,可判断得3-k<0,-k<0,解之得k>0,k>3,即k>3.
故选A
考点:一次函数的图像与性质
2、B
【解析】
连接PC,根据正方形的对角线平分一组对角可得∠ABP=∠CBP=45°,然后利用“边角边”证明△ABP和△CBP全等,根据全等三角形对应边相等可得AP=PC,对应角相等可得∠BAP=∠BCP,再根据矩形的对角线相等可得EF=PC,于是得到结论.
【详解】
解:如图,连接PC,在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,
∵在△ABP和△CBP中,,
∴△ABP≌△CBP(SAS),
∴AP=PC,∠BAP=∠BCP,
又∵PE⊥BC,PF⊥CD,
∴四边形PECF是矩形,
∴PC=EF,∠BCP=∠PFE,
∴AP=EF,∠PFE=∠BAP,故①③正确;
只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故②错误;
故选:B.
本题主要考查了正方形的性质,正确证明△ABP≌△CBP,以及理解P的任意性是解决本题的关键.
3、D
【解析】
作C点关于y轴的对称点,连接,与y轴的交点即为所求点P,用勾股定理可求得长度,可得PC+PD的最小值为,再根据CD=2,可得PC+PD+CD=
【详解】
解:如图,作C点关于y轴的对称点,连接交y轴与点P,此时PC+PD的值最小且
∵,分别是,的中点,,
∴C(1,0),D(1,2)
在Rt△中,由勾股定理可得
又∵D(1,2)
∴CD=2
∴此时周长为PC+PD+CD=
故选D
本题考查最短路径问题,把图形作出来是解题关键,再结合勾股定理解题.
4、D
【解析】
根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。
【详解】
解:设直角三角形的两条直角边分别为x、y,
∵斜边上的中线为d,
∴斜边长为2d,由勾股定理得,x2+y2=4d2,
∵直角三角形的面积为S,
∴,则2xy=4S,即(x+y)2=4d2+4S,
∴
∴这个三角形周长为: ,故选:D.
本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
5、C
【解析】
先根据平均数的概念列出关于m的方程,解之求出m的值,据此得出新数据,继而根据平均数的概念求解可得.
【详解】
解:根据题意,有
,
∴解得:,
∴.
故选:C.
本题主要考查算术平均数,解题的关键是掌握算术平均数的概念进行解题.
6、A
【解析】
根据中心对称图形和轴对称图形的概念逐一进行分析即可.
【详解】
A、是中心对称图形,也是轴对称图形,故符合题意;
B、不是中心对称图形,是轴对称图形,故不符合题意;
C、不是中心对称图形,是轴对称图形,故不符合题意;
D、不是中心对称图形,是轴对称图形,故不符合题意,
故选A.
本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
7、B
【解析】
首先根据E是AC的中点得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.
【详解】
∵E为AC中点,
∴AE=EC,
∵CF∥BD,
∴∠ADE=∠F,
在△ADE和△CFE中,
∵,
∴△ADE≌△CFE(AAS),
∴DE=FE.
故选B.
本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.
8、D
【解析】
先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.
【详解】
解:A.若a2=b2,则a=b的逆命题是若a=b,则a2=b2,正确;
B.两直线平行,内错角相等的逆命题是内错角相等,两直线平行,正确;
C.等腰三角形的两个底角相等的逆命题是两底角相等的三角形是等腰三角形,正确;
D.对顶角相等的逆命题是相等的角是对顶角,错误;
故选:D.
本题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
不等式的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象可以直接得出答案.
【详解】
解:不等式的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象得:1<x<1.
故答案为:1<x<1.
本题考查一次函数、反比例函数的图象和性质,理清不等式的解集与两个函数的交点坐标之间的关系是解决问题的关键.
10、2
【解析】
由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF1.设AB= x,则AF=x ,AC=x+1,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+1)2,解方程即可得出AB的长,由矩形的性质即可得出结论.
【详解】
由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF1.
设AB= x,则AF=x ,AC=x+1.
∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+1)2,解得:x=2,∴AB=2.
∵ABCD是矩形,∴CD=AB=2.
故答案为:2.
本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
11、
【解析】
推出方程x-3=0或x=0,求出方程的解即可.
【详解】
解:∵,
即x=0或x+3=0,
∴方程的解为.
本题主要考查对解一元二次方程,解一元一次方程,等式的性质等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.
12、
【解析】
先求出英文单词believe总的字母个数和e的个数,再根据握频率=进行计算即可.
【详解】
∵英文单词believe共有7个字母,其中有3个e,
∴字母“e”出现的频率是;
故答案为:.
此题考查频数与频率,解题关键在于掌握频率的计算公式即可.
13、y=17x+1
【解析】
由图可知,将x张这样的白纸粘合后的总长度=x张白纸的总长-(x-1)个粘合部分的宽,把相关数据代入化简即可得到所求关系式.
【详解】
解:
由题意可得:y=20x-1(x-1)=17x+1,
即:y与x间的函数关系式为:y=17x+1.
故答案为:y=17x+1.
观察图形,结合题意得到:“白纸粘合后的总长度=x张白纸的总长-(x-1)个粘合部分的宽”是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)=,=;(2);(3)当或时是等腰三角形.
【解析】
试题分析:(1)根据AD、BC的值和点Q的速度是1cm/s,点P的速度是2cm/s,直接用t表示出QD、CP的值;(2)四边形是平行四边形,则需,可得方程8-t=10-2t,再解方程即可;(3)分两种情况讨论:①,②,根据这两种情况分别求出t值即可.
试题解析:解:(1)=,=;
(2)若四边形是平行四边形,则需
∴
解得
(3)①若,如图1, 过作于
则,
∵
∴解得
②若,如图2,过作于
则,
即解得
综上所述,当或时是等腰三角形
考点:四边形、三角形综合题;几何动点问题.
15、见解析
【解析】
(1)首先化简和,再分别计算乘法即可;
(2)根据勾股定理画出AC=,再确定B的位置,既要使AB=1,又要使BC=即可;
(3)利用三角形的面积公式,以BA为底,确定AB上的高为2,再计算即可.
【详解】
(1)4=4×=2,
=×=×=;
(2)如图所示:
(3)△ABC的面积1×2=1平方单位.
本题主要考查了应用与设计作图,以及勾股定理的应用和二次根式的计算,关键是正确化简AC、BC的长.
16、(1)13;(2)见解析
【解析】
(1)由正方形的性质得出∠B=90°,BG=BC=5,则AB=AC+BC=12,由勾股定理即可得出结果;
(2)设BC=a,由正方形的性质和点C是线段AB的三等分点得出AC=CE=2BC=2CF=2a,BC=BG=FG=CF=EF=a,∠B=∠ACE=∠EFG=∠EFG=90°,由勾股定理得出AE2=AC2+CE2=8a2,AG2=AB2+BG2=10a2,EG2=EF2+FG2=2a2,证得AG2=AE2+EG2,即可得出结论.
【详解】
(1)解:∵四边形BCFG是正方形,
∴∠B=90°,BG=BC=5,
∵AB=AC+BC=7+5=12,
∴AG===13,
故答案为:13;
(2)证明:设BC=a,
∵四边形ACED和四边形BCFG都是正方形,点C是线段AB的三等分点,
∴AC=CE=2BC=2CF=2a,BC=BG=FG=CF=EF=a,∠B=∠ACE=∠EFG=∠EFG=90°,
∴AE2=AC2+CE2=8a2,
AB=3BC=3a,
AG2=AB2+BG2=9a2+a2=10a2,
EG2=EF2+FG2=a2+a2=2a2,
∴AE2+EG2=8a2+2a2=10a2,
∴AG2=AE2+EG2,
∴△AEG是直角三角形.
此题考查正方形的性质,勾股定理,熟练掌握正方形的性质与勾股定理是解题的关键.
17、(1)83,81;(2),推荐甲去参加比赛.
【解析】
(1)根据中位数和众数分别求解可得;
(2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.
【详解】
(1)甲成绩的中位数是83分,乙成绩的众数是81分,
故答案为:83分、81分;
(2),
∴.
∵,,
∴推荐甲去参加比赛.
此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
18、(1)D的长为10m;(1)当a≥50时,S的最大值为1150;当0<a<50时,S的最大值为50a﹣a1.
【解析】
(1)设AB=xm,则BC=(100﹣1x)m,利用矩形的面积公式得到x(100﹣1x)=450,解方程求得x1=5,x1=45,然后计算100﹣1x后与10进行大小比较即可得到AD的长;(1)设AD=xm,利用矩形面积可得S= x(100﹣x),配方得到S=﹣(x﹣50)1+1150,根据a的取值范围和二次函数的性质分类讨论:当a≥50时,根据二次函数的性质得S的最大值为1150;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a
【详解】
(1)设AB=xm,则BC=(100﹣1x)m,
根据题意得x(100﹣1x)=450,解得x1=5,x1=45,
当x=5时,100﹣1x=90>10,不合题意舍去;
当x=45时,100﹣1x=10,
答:AD的长为10m;
(1)设AD=xm,
∴S=x(100﹣x)=﹣(x﹣50)1+1150,
当a≥50时,则x=50时,S的最大值为1150;
当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a1,
综上所述,当a≥50时,S的最大值为1150;当0<a<50时,S的最大值为50a﹣a1.
本题考查了一元二次方程及二次函数的应用.解决第(1)问时,要注意根据二次函数的性质并结合a的取值范围进行分类讨论,这也是本题的难点.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据平均数的公式列式计算即可.
【详解】
解:=0,
得a=1,
故答案为:1.
本题主要考查了平均数的计算,要熟练掌握方法.
20、
【解析】
令y=0,即可求出交点坐标.
【详解】
令y=0,得x=1,
故一次函数与x轴的交点为
故填
此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
21、AD=AB
【解析】
根据菱形的判定定理即可求解.
【详解】
∵四边形ABCD为平行四边形,
所以可以添加AD=AB,即可判定是菱形,
故填:AD=AB.
此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.
22、x≥1.
【解析】
试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.
故答案为x≥1.
考点: 一次函数与一元一次不等式.
23、1分米或分米.
【解析】
分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
2是斜边时,此直角三角形斜边上的中线长=×2=1分米,
2是直角边时,斜边=,
此直角三角形斜边上的中线长=×分米,
综上所述,此直角三角形斜边上的中线长为1分米或分米.
故答案为1分米或分米.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.
二、解答题(本大题共3个小题,共30分)
24、证明见解析
【解析】
根据于F点,于G点,可得,根据四边形ABCD是正方形,可得,再根据,,可得:
,在和中,由,可判定≌,根据全等三角形的性质可得:.
【详解】
证明:于F点,于G点,
,
四边形ABCD是正方形,
,
,
又,
,
在和中,
,
≌,
,
本题主要考查正方形的性质和全等三角形的判定和性质,解决本题的关键是要熟练掌握正方形的性质和全等三角形的判定和性质.
25、(1);(2)50件.
【解析】
(1)设该种商品每次降价的百分率为x,根据该种商品的原价及经两次降价后的价格,即可得出关于x的一元二次方程,解之即可得出结论;
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100−m)件,根据总利润=单件利润×销售数量结合两次降价销售的总利润不少于8000元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.
【详解】
解:(1)设每次降价的百分率为,
则可得,
∴,或(舍),
∴该商品每次降低的百分率为.
(2)设第一次降价后售出件,则第二次售出件.
则第一次降价后单价为:(元/件),
,
解得:,
∴第一次降价后至少要售出50件.
本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量间的关系,找出关于m的一元一次不等式.
26、【发现与证明】结论1:见解析,结论1:见解析;【应用与探究】AC的长为或1.
【解析】
【发现与证明】由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA= (180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;
【应用与探究】:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=1.
【详解】
【发现与证明】:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠EAC=∠ACB,
∵△ABC≌△AB′C,
∴∠ACB=∠ACB′,BC=B′C,
∴∠EAC=∠ACB′,
∴AE=CE,
即△ACE是等腰三角形;
∴DE=B′E,
∴∠CB′D=∠B′DA=11(180°−∠B′ED),
∵∠AEC=∠B′ED,
∴∠ACB′=∠CB′D,
∴B′D∥AC;
【应用与探究】:分两种情况:①如图1所示:
∵四边形ACDB′是正方形,
∴∠CAB′=90°,
∴∠BAC=90°,
∵∠B=45°,
∴AC=;
②如图1所示:AC=BC=1;
综上所述:AC的长为或1.
本题考查平行四边形的性质, 正方形的性质, 翻折变换(折叠问题).【发现与证明】对于结论1,要证明三角形是等腰三角形,只需要证明它的两条边相等,而在同一个三角形内要证明两条线段相等只需要证明它们所对应的角相等(即用等角对等边证明).结论1:要证明两条线段平行,本题用到了内错角相等,两直线平行.所以解决【发现与证明】的关键是根据已知条件找到对应角之间的关系. 【应用与探究】折叠时,因为正方形的四个角都是直角,所以对应线段之间存在共线情况,所以分BA和AB’共线和BC和B’C两种情况讨论,能根据题意画出两种情况对应的图形,是解题关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份河南省商丘市永城市2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山西省实验中学九年级数学第一学期开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山西大附中数学九年级第一学期开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。