开学活动
搜索
    上传资料 赚现金

    河南省新乡市2024-2025学年数学九上开学统考模拟试题【含答案】

    河南省新乡市2024-2025学年数学九上开学统考模拟试题【含答案】第1页
    河南省新乡市2024-2025学年数学九上开学统考模拟试题【含答案】第2页
    河南省新乡市2024-2025学年数学九上开学统考模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省新乡市2024-2025学年数学九上开学统考模拟试题【含答案】

    展开

    这是一份河南省新乡市2024-2025学年数学九上开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果下列各组数是三角形的三边,则能组成直角三角形的是( )
    A.B.C.D.
    2、(4分)已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是( )
    A. B.
    C. D.
    3、(4分)如图,四边形ABCD中,AB=CD,AD∥BC,AE∥DC∠B=60°,BC=3,△ABE的周长为6,则四边形ABCD的周长是( ).
    A.8B.10C.12D.16
    4、(4分)已知一元二次方程有一个根为2,则另一根为
    A.2B.3C.4D.8
    5、(4分)如图,已知点A(0,9),点B是x轴正半轴上的一动点,以AB为边作等腰直角三角形ABC使点C在第一象限,∠BAC=90°.设点B的横坐标为x,点C的纵坐标为y则表示y与x的函数关系的图象大致是( )
    A.B.
    C.D.
    6、(4分)如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为( )
    A.1B.2C.3D.4
    7、(4分)如图,中,点是边的中点,交对角线于点,则等于( )
    A.B.C.D.
    8、(4分)不等式组的解集在数轴上可表示为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,则点E的对应点E′的坐标是_____.
    10、(4分)计算=__________.
    11、(4分)化简:= .
    12、(4分)如图,甲、乙两名同学分别站在C、D的位置时,乙的影子与甲的影子的末端恰好在同一点,已知甲、乙两同学相距1m,甲身高1.8m,乙身高1.5m,则甲的影子是________m.
    13、(4分)甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:.
    15、(8分)为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米)通过计算平均数和方差,评价哪个品种出苗更整齐.
    16、(8分)已知:一次函数的图像经过点A(-1,2)和点B(0,4).
    (1)求这个一次函数的表达式;
    (2)请你画出平面直角坐标系,并作出本题中的一次函数的图像.
    17、(10分)如图,矩形OABC在平面直角坐标系中的位置如图所示,点B(﹣3,5),点D在线段AO上,且AD=2OD,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.
    18、(10分)阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:.当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:.假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:.
    解决问题:
    (1)下列分式中属于真分式的是( )
    A. B. C. D.
    (2)将假分式分别化为带分式;
    (3)若假分式的值为整数,请直接写出所有符合条件的整数x的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)直线的截距是__________.
    20、(4分)如图,线段AC、BD交于点O,请你添加一个条件:________,使△AOB∽△COD.
    21、(4分)若正比例函数y=kx的图象经过点(1,2),则k=_______.
    22、(4分)如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2,则DE=___.
    23、(4分)合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,方格纸中每个小方格都是长为1个单位的正方形.若学校位置的坐标为A(1,2),解答以下问题:
    (1)请在图中建立适当的直角坐标系,并写出图书馆B位置的坐标;
    (2)若体育馆位置的坐标为C(-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
    25、(10分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC的三个顶点都在格点上。
    (1)请作出△ABC关于x轴对称的△A′B′C′,并分别写出点A′,B′,C′的坐标。
    (2)在格点上是否存在一点D,使A,B,C,D四点为顶点的四边形是平行四边形,若存在,直接写出D点的坐标(只需写出一点即可)。
    26、(12分)学完三角形的高后,小明对三角形与高线做了如下研究:如图,是中边上的-点,过点、分别作、、、,垂足分别为点、、,由与的面积之和等于的面积,有等量关系式:.像这种利用同一平面图形的两种面积计算途径可以得出相关线段的数量关系式,从而用于解决数学问题的方法称为“等积法”,下面请尝试用这种方法解决下列问题.

    图(1) 图(2)
    (1)如图(1), 矩形中,,,点是上一点,过点作,,垂足分别为点、,求的值;
    (2)如图(2),在中,角平分线、相交于点,过点分别作、,垂足分别为点、,若,,求四边形的周长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.
    【详解】
    A. ∵1 + =2,
    ∴此三角形是直角三角形,正确;
    B. ∵1+3≠4,
    ∴此三角形不是直角三角形,不符合题意;
    C. ∵2+3≠6,
    ∴此三角形不是直角三角形,不合题意;
    D. ∵4+5≠6,
    ∴此三角形不是直角三角形,不合题意.
    故选:A.
    此题考查勾股定理的逆定理,解题关键在于掌握计算公式.
    2、D
    【解析】
    分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
    详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
    B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
    C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
    D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;
    故选D.
    点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.
    3、A
    【解析】
    根据平行四边形的判定和等腰梯形的性质,证明△ABE是等边三角形,从而可知等腰梯形的腰长,也就可以求出其周长.
    【详解】
    解:∵AD∥BC,AE∥DC
    ∴四边形ADCE为平行四边形
    ∴EC=AD,AE=CD
    ∵AB=CD
    ∴AB=AE
    又∵∠B=60°,
    ∴△ABE是等边三角形,
    ∵△ABE的周长为6,
    ∴BE=2,
    ∵BC=3,
    ∴EC=AD=1,
    ∴等腰梯形的周长=AB+BC+CD+AD=2+3+2+1=8,
    故选A.
    此题主要考查学生对等腰梯形的性质及平行四边形的性质的掌握情况.
    4、C
    【解析】
    试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=1.
    考点:根与系数的关系.
    5、A
    【解析】
    过点C作CD⊥y轴于点D,证明△CDA≌△AOB(AAS),则AD=OB=x,y=OA+AD=9+x,即可求解.
    【详解】
    解:过点C作CD⊥y轴于点D,
    ∵∠OAB+∠OBA=90°,∠OAB+∠CAD=90°,
    ∴∠CAD=∠ABO,
    ∵∠CDA=∠AOB=90°,AB=AC,
    ∴△CDA≌△AOB(AAS),
    ∴AD=OB=x,
    y=OA+AD=9+x,
    故选:A.
    本题主要考查全等三角形的性质及一次函数的图象,掌握一次函数的图象及全等三角形的性质是解题的关键
    6、B
    【解析】
    根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.
    【详解】
    解:BD=BC=6,
    ∴AD=AB﹣BD=4,
    ∵BC=BD,BE⊥CD,
    ∴CE=ED,又CF=FA,
    ∴EF=AD=2,
    故选B.
    本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    7、B
    【解析】
    如图,证明AD∥BC,AD=BC;得到△DEF∽△BCF,进而得到;证明BC=AD=2DE,即可解决问题.
    【详解】
    四边形为平行四边形,



    点是边的中点,

    .故选B.
    该题主要考查了平行四边形的性质、相似三角形的判定及其性质等几何知识点及其应用问题;牢固掌握平行四边形的性质、相似三角形的判定及其性质是关键.
    8、D
    【解析】
    先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.
    【详解】
    解不等式组可求得:
    不等式组的解集是,
    故选D.
    本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(-8,4)或(8,-4)
    【解析】
    由在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,根据位似图形的性质,即可求得点E的对应点E′的坐标.
    【详解】
    ∵点E(-4,2),以原点O为位似中心,相似比为2,把△EFO放大,
    ∴点E的对应点E′的坐标是:(-8,4)或(8,-4).
    故答案为:(-8,4)或(8,-4).
    此题考查了位似图形的性质.此题比较简单,注意位似图形有两个.
    10、
    【解析】
    分析:先把各根式化简,然后进行合并即可得到结果.
    详解:原式=
    =
    点睛:本题主要考查二次根式的加减,比较简单.
    11、2
    【解析】
    根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
    【详解】
    ∵22=4,∴=2.
    本题考查求算术平方根,熟记定义是关键.
    12、1
    【解析】
    解:设甲的影长是x米,
    ∵BC⊥AC,ED⊥AC,
    ∴△ADE∽△ACB,
    ∴,
    ∵CD=1m,BC=1.8m,DE=1.5m,
    ∴,
    解得:x=1.
    所以甲的影长是1米.
    故答案是1.
    考点:相似三角形的应用.
    13、630
    【解析】
    分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.
    详解:设甲车,乙车的速度分别为x千米/时,y千米/时,
    甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,
    相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,
    则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,
    乙车行驶900-720=180千米所需时间为180÷80=2.25小时,
    甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.
    所以甲车从B地向A地行驶了120×2.25=270千米,
    当乙车到达A地时,甲车离A地的距离为900-270=630千米.
    点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    根据分式的基本运算法则,先算括号内,再算除法.
    【详解】
    试题分析:
    解:
    考点:实数的运算;本题属于基础应用题,只需学生熟练掌握实数的基本运算规则,即可完成.
    15、甲种水稻出苗更整齐
    【解析】
    根据平均数、方差的计算公式求出平均数和方差,再根据平均数、方差的意义,进行比较可得出结论.
    【详解】
    解:(厘米),
    (厘米),
    (厘米),
    (厘米),
    ∵,
    ∴甲种水稻出苗更整齐.
    本题考查平均数、方差的计算及意义,需熟记计算公式.
    16、(1);(2)见解析
    【解析】
    (1)设一次函数解析式为,将A,B坐标代入求出k,b的值,即可得解析式;
    (2)建立坐标系,找到A,B两点的位置,再连线即可.
    【详解】
    (1)设一次函数解析式为,
    将A(-1,2)和点B(0,4)代入得:
    解得,
    ∴一次函数解析式为
    (2)如图所示,
    本题考查求一次函数解析式与作图,熟练掌握待定系数法求函数解析式是解题的关键.
    17、(﹣3,2)
    【解析】
    先作点D关于直线AB的对称点D′,连接CD′交AB于点E′.根据矩形的性质及题意得到直线CD′的解析式,即可得到答案.
    【详解】
    如图,作点D关于直线AB的对称点D′,连接CD′交AB于点E′.此时△DCE′的周长最小.
    ∵四边形AOCB是矩形, B(﹣3,5),
    ∴OA=3,OC=5,
    ∵AD=2OD,
    ∴AD=2,OD=1,
    ∴AD′=AD=2,
    ∴D′(﹣5,0),∵C(0,5),
    ∴直线CD′的解析式为y=x+5,
    ∴E′(﹣3,2).
    本题考查矩形的性质和求一元一次方程,解题的关键是掌握矩形的性质和求一元一次方程.
    18、(1)C;
    (2),;
    (3)x可能的整数值为0,-2,-4,-6.
    【解析】
    (1)根据真分式的定义,即可选出正确答案;
    (2)利用题中的方法把分子分别变形为和,然后写成带分式即可;
    (3)先把分式化为带分式,然后利用有理数的整除性求解.
    【详解】
    (1)A.分子的次数为2,分母的次数为1,所以错误;
    B. 分子的次数为1,分母的次数为1,故错误;
    C. 分子的次数为0,分母的次数为1,故正确;
    D. 分子的次数为2,分母的次数为2,故错误;
    所以选C;
    (2),

    (3)
    ∵该分式的值为整数,
    ∴ 的值为整数,
    所以x+3可取得整数值为±3,±1,
    x可能的整数值为0,-2,-4,-6.
    本题主要考查分式的性质,要结合分式的基本性质依照题目中的案例,会对分式进行适当的变形.(1)根据真分式的定义判断即可;(2)可借助平方差公式,先给x2减1再加1,将它凑成平方差公式x2-1=(x+1)(x-1);(3)需将假分式等量变形成带分式,然后对取整.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-5
    【解析】
    根据截距的定义:直线方程y=kx+b中,b就是截距解答即可.
    【详解】
    直线的截距是−5.
    故答案为:−5.
    此题考查一次函数图象,解题关键在于掌握一次函数图象上点的坐标特征.
    20、OB=OD.(答案不唯一)
    【解析】
    AO=OC,有一对对顶角∠AOB与∠COD,添加OB=OD,即得结论.
    【详解】
    解: ∵OA=OC,∠AOB=∠COD(对顶角相等),OB=OD,
    ∴△ABO≌△CDO(SAS).
    故答案为:OB=OD.(答案不唯一)
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    21、2
    【解析】
    由点(2,2)在正比例函数图象上,根据函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出k值.
    【详解】
    ∵正比例函数y=kx的图象经过点(2,2),
    ∴2=k×2,即k=2.
    故答案为2.
    本题考查了一次函数图象上点的坐标特征,解题的关键是得出2=k×2.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用一次函数图象上点的坐标特征求出一次函数的系数是关键.
    22、1
    【解析】
    连接DC,由垂直平分线的性质可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用锐角三角函数定义可得CD的长,利用“在直角三角形中,30°角所对的直角边等于斜边的一半.”可得DE的长.
    【详解】
    解:连接DC,
    ∵∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,
    ∴DC=DA,
    ∴∠ACD=∠A=30°,∠BCD=30°,

    ∵∠BCD=30°,

    ∴DE=1,
    故答案为1.
    本题主要考查了直角三角形的性质和垂直平分线的性质,做出恰当的辅助线是解答此题的关键.
    23、.
    【解析】
    根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,
    ∵坐到1,2,3号的坐法共有 6 种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有 2 种方法(CBD、DBC)B坐在2号座位,
    ∴B坐在2号座位的概率是.
    二、解答题(本大题共3个小题,共30分)
    24、 (1) (-3,-2);(2)1.
    【解析】
    (1)利用点A的坐标画出直角坐标系;根据点的坐标的意义描出点B;
    (2)利用三角形的面积得到△ABC的面积.
    【详解】
    解:(1)建立直角坐标系如图所示:
    图书馆B位置的坐标为(-3,-2);
    (2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为=×5×4=1.
    本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
    25、(1)A(-3,-4),B'(-1,-1);(2)D1(4,0),D2(-6,2),D3(0,6)
    【解析】
    (1)分别作A、B、C关于x轴对称的点A‘、B’、C‘,然后顺次把这三点连接起来即可;由图直接读出A’、B‘、C’的坐标即可;
    (2)分别以BC、AB、AC为对角线作平行四边形,得到D1、D2、D3 , 由图读出D1、D2、D3坐标即可.
    【详解】
    (1)解:如图所示,△A'B′C′即为所求,A(-3,-4),B'(-1,-1),C(2,-3)
    (2)解:如图所示,D1(4,0),D2(-6,2),D3(0,6)(只需写出一点即可)
    此题主要考查图形与坐标,解题的关键是熟知平行四边形的性质.
    26、(1);(2)4
    【解析】
    (1)由矩形的性质可得∠ABC=90°,AO=CO,BO=DO,由“等积法”可求解;
    (2)由“等积法”可求OM=ON=1,通过证明四边形AMON是正方形,即可求解.
    【详解】
    解:(1)如图,连接,
    则由矩形性质有:




    解得:;
    (2)连接,过点作,垂足为点,
    又是的角平分线,、,垂足分别为点、,

    在中,
    设,则

    解得:
    四边形是矩形

    矩形是正方形
    正方形的周长.
    本题考查了矩形的性质,正方形的判定,熟练掌握“等积法”是本题的关键
    题号





    总分
    得分
    编号
    1
    2
    3
    4
    5

    12
    13
    14
    15
    16

    13
    14
    16
    12
    10

    相关试卷

    海南省定安县2024-2025学年九上数学开学统考模拟试题【含答案】:

    这是一份海南省定安县2024-2025学年九上数学开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江杭州上城区数学九上开学统考模拟试题【含答案】:

    这是一份2024-2025学年浙江杭州上城区数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西师大附中数学九上开学统考模拟试题【含答案】:

    这是一份2024-2025学年陕西师大附中数学九上开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map