河南省信阳市浉河区第九中学2025届数学九上开学调研试题【含答案】
展开这是一份河南省信阳市浉河区第九中学2025届数学九上开学调研试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是( )
A.220,220B.220,210C.200,220D.230,210
2、(4分)若=,则的值是()
A.B.C.D.
3、(4分)如图,这组数据的组数与组距分别为( )
A.5,9B.6,9
C.5,10D.6,10
4、(4分)若关于的一元二次方程的一个根是1,则的值为( )
A.-2B.1C.2D.0
5、(4分)用配方法解方程时,配方后正确的是( )
A.B.C.D.
6、(4分)若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是( )
A.y=60-2x(0
A.速度与路程B.速度与时间C.路程与时间D.速度
8、(4分)如图,菱形的对角线、相交于点,,,过点作于点,连接,则的长为( )
A.B.2C.3D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简:=_____.
10、(4分)在四边形中,同一条边上的两个角称为邻角.如果一个四边形一条边上的邻角相等,且这条边的对边上的邻角也相等,那么这个四边形叫做C形.根据研究平行四边形及特殊四边形的方法,在下面的横线上至少写出两条关于C形的性质:_____.
11、(4分)2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为_____.
12、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了100米,则山坡的高度BC为_____米.
13、(4分)对于实数,,定义新运算“”:.如.若,则实数的值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)求不等式组的解集,并把解集在数轴上表示出来
15、(8分)矩形中,对角线、交于点,点、、分别为、、的中点.
(1)求证:四边形为菱形;
(2)若,,求四边形的面积.
16、(8分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:
(1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
17、(10分)如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).
18、(10分)某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
结合以上信息,回答下列问题:
(1)求服装项目在选手考评中的权数;
(2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知∠1=100°,∠2=140°,那么∠3=_____度.
20、(4分)如图,直线与直线交于点,则不等式的解集是__________.
21、(4分)在一次函数y=(m-1)x+6中,y随x的增大而增大,则m的取值范围是______.
22、(4分)已知5个数的平均数为,则这六个数的平均数为___
23、(4分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两组数据单位:如下表:
(1)根据以上数据填写下表;
(2)根据以上数据可以判断哪一组数据比较稳定.
25、(10分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,建立平面直角坐标系,△ABC的顶点均在格点上.(不写作法)
(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出B1的坐标;
(2)再把△A1B1C1绕点C1 顺时针旋转90°,得到△A2B2C1,请你画出△A2B2C1,并写出B2的坐标.
26、(12分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:
学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.
(1)参加此次研学活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;
(3)学校共有几种租车方案?最少租车费用是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由题意知,200,210,210,210,220,220,220,220,230,230,230,故众数中位数都是220,
故选A.
2、A
【解析】
先设a=2k,则b=5k,然后将它们分别代入,计算即可求出其值即可.
【详解】
解:∵=,
设a=2k,则b=5k,
∴=.
故选A.
本题考查了比例的基本性质,比较简单,关键是巧设未知数,可使计算简便.
3、D
【解析】
通过观察频率分布直方图,发现一共分为6组,每一组的最大值和最小值的差都是10,做出判断.
【详解】
解:频率分布直方图中共有6个直条,故组数是6,每组的最大值和最小值的差都是10,因此组距是10,
故选:D.
考查频率分布直方图的制作方法,明确组距、组数的意义是绘制频率分布直方图的两个基本的步骤.
4、C
【解析】
根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.
【详解】
解:根据题意得:1-3+a=0
解得:a=1.
故选C.
本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.
5、B
【解析】
根据配方法解方程的方法和步骤解答即可.
【详解】
解:对于方程,移项,得:,
两边同时除以3,得:,
配方,得:,即.
故选:B.
本题考查了用配方法解一元二次方程,属于基础题型,熟练掌握配方的方法和步骤是解答的关键.
6、D
【解析】
∵2y+x=60,
∴y= (60-x)(0
7、C
【解析】
在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断.
【详解】
解:由题意的:s=50t,路程随时间的变化而变化,则行驶时间是自变量,行驶路程是因变量;
故选:C.
此题主要考查了自变量和因变量,正确理解自变量与因变量的定义,是需要熟记的内容.
8、C
【解析】
先证明△ABC为等边三角形,再证明OE是△ABC的中位线,利用三角形中位线即可求解.
【详解】
解:∵ABCD是菱形,
∴AB=BC,OA=OC,
∵∠ABC=60°,
∴△ABC为等边三角形,
∵,
∴E是BC中点,
∴OE是△ABC的中位线,
∴OE=AB,
∵,
∴OE=3;
故选:C.
本题考查了菱形的性质以及等边三角形判定和性质,证明△ABC为等边三角形是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据二次根式的乘法 ,化简即可得解.
【详解】
解:==1.
故答案为:1.
本题主要考查二次根式的乘法法则,熟悉掌握法则是关键.
10、是轴对称图形;对角线相等;有一组对边相等;有一组对边平行.
【解析】
根据C形的定义,利用研究平行四边形及特殊四边形的方法,从边、角、对角线以及对称性这几个方面分析即可.
【详解】
根据C形的定义,称C形中一条边上相等的邻角为C形的底角,这条边叫做C形的底边,夹在两底边间的边叫做C形的腰.则C形的性质如下:
C形的两底边平行;C形的两腰相等;
C形中同一底上的两个底角相等;C形的对角互补;
C形的两条对角线相等;
C形是轴对称图形.
故答案为:C形的两底边平行;C形的两腰相等;
C形中同一底上的两个底角相等;C形的对角互补;
C形的两条对角线相等;
C形是轴对称图形
本题考查了平行四边形性质的应用,学生的阅读理解能力与知识的迁移能力,掌握研究平行四边形及特殊四边形的方法,并且能够灵活运用是解题的关键.
11、x(x﹣1)=1
【解析】
设参赛队伍有x支,根据参加篮球职业联赛的每两队之间都进行两场比赛,共要比赛1场,可列出方程.
【详解】
设参赛队伍有x支,根据题意得:
x(x﹣1)=1
故答案为x(x﹣1)=1.
本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.
12、1
【解析】
直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.
【详解】
由题意可得:AB=100m,∠A=30°,
则BC=AB=1(m).
故答案为:1.
此题主要考查了解直角三角形的应用,正确得出BC与AB的数量关系是解题关键.
13、6或-1
【解析】
根据新定义列出方程即可进行求解.
【详解】
∵
∴x2-5x=6,
解得x=6或x=-1,
此题主要考查一元二次方程的解,解题的关键是根据新定义列出方程.
三、解答题(本大题共5个小题,共48分)
14、不等式组的解集为x>3,在数轴上表示见解析.
【解析】
先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来.
【详解】
∵由不等式①得:x≥2,
由不等式②得:x>3,
∴不等式组的解集为x>3,
在数轴上表示为:.
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.
15、(1)见解析;(2).
【解析】
(1)根据三角形的中位线定理即可证明;
(2)根据菱形的面积公式即可求解.
【详解】
(1)∵四边形是矩形,
∴,
又∵点、、分别为、、的中点,
∴,,且,
同理,,
故,
∴四边形为菱形;
(2)连接、,则,且,
,且,
由(1)知,四边形为菱形,
故.
此题主要考查菱形的判定与面积求解,解题的关键是熟知菱形的判定定理.
16、(1)50; 1;(2)2;3;15;(3)608人.
【解析】
(1)根据条形统计图即可得出样本容量:4+2+12+3+8=50(人);根据扇形统计图得出m的值:;
(2)利用平均数、中位数、众数的定义分别求出即可.
(3)根据样本中捐款3元的百分比,从而得出该校本次活动捐款金额为3元的学生人数.
【详解】
解:(1)根据条形图4+2+12+3+8=50(人),
m=30-20-24-2-8=1;
故答案为:50; 1.
(2)∵,
∴这组数据的平均数为:2.
∵在这组样本数据中,3出现次数最多为2次,
∴这组数据的众数为:3.
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,
∴这组数据的中位数为:,
(3)∵在50名学生中,捐款金额为3元的学生人数比例为1%,
∴由样本数据,估计该校1900名学生中捐款金额为3元的学生人数有1900×1%=608人.
∴该校本次活动捐款金额为3元的学生约有608人.
此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
17、教学楼A与办公楼B之间的距离大约为94.6米.
【解析】
由已知可得△ABP中∠A=60°∠B=45°且PC=60m,要求AB的长,可以先求出AC和BC的长就可转化为运用三角函数解直角三角形.
【详解】
由题意可知
∠ACP=∠BCP= 90°,∠APC=30°,∠BPC=45°
在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴
在Rt△ACP中,∵∠ACP=90°,∠APC=30°,
∴
∴
≈60+20×1.732 =94.64≈94.6(米)
答:教学楼A与办公楼B之间的距离大约为94.6米.
本题考查了解直角三角形的应用--方向角问题.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
18、 (1)10%;(2)见解析.
【解析】
(1)所有项目所占的总权数为100%,从100%中减去其它几个项目的权数即可,
(2)计算李明、张华的总成绩,即加权平均数后,比较得出答案.
【详解】
解:(1)服装权数是
(2)选择李明参加比赛
理由如下:
李明的总成绩
张华的总成绩
选择李明参加比赛.
考查加权平均数的意义及计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、60°.
【解析】
该题是对三角形外角性质的考查,三角形三个外角的和为360°,所以∠4=360°-∠1-∠2=360°-100°-140°=120°,∠3=180°-120=60度.
【详解】
解:∵∠1=∠3+(180°-∠2),
∴∠3=∠1-(180°-∠2)=100°-(180°-140°)=60°.
故答案为:60°.
此题结合了三角形的外角和和邻补角的概念,要注意三角形的外角和与其它多边形一样,都是360°.
20、
【解析】
不等式的解集为直线在直线上方部分所对的x的范围.
【详解】
解:由图象可得,当时,直线在直线上方,所以不等式的解集是.
故答案为:
本题考查了一次函数与不等式的关系,合理利用图象信息是解题的关键.
21、m>1
【解析】
由一次函数的性质可得到关于m的不等式,可求得m的取值范围.
【详解】
解:∵一次函数y=(m-1)x+6,若y随x的增大而增大,
∴m-1>0,解得m>1,
故答案为:m>1.
本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
22、
【解析】
根据前5个数的平均数为m,可得这5个数的总和,加上第6个数0,利用平均数的计算公式计算可得答案.
【详解】
解:∵
∴
∴
∴这六个数的平均数
此题主要考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是判断出:.
23、1
【解析】
设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.
【详解】
设购买篮球x个,则购买足球个,
根据题意得:,
解得:.
为整数,
最大值为1.
故答案为1.
本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)答案见解析;(2)甲组数据较稳定
【解析】
(1)根据图表按照平均数,众数,中位数的定义一一找出来填表即可.
(2)此问先比较平均数,如果平均数相同再比较方差.
【详解】
(1)
(2)∵甲、乙两组数据的平均数相同,且<,∴甲组数据较稳定.
此题考查数据的收集和处理,包含内容有众数,中位数,平均数及方差.
25、(1)B1的坐标(﹣5,4);(2)B2的坐标(﹣1,2).
【解析】
(1)作出各点关于原点的对称点,再顺次连接,并写出B1的坐标即可;
(2)根据图形旋转的性质画出△A2B2C2,并写出B2的坐标即可.
【详解】
(1)如图,△A1B1C1即为所求,由图可知B1的坐标(﹣5,4);
(2)如图,△A2B2C2即为所求,由图可知B2的坐标(﹣1,2).
考查的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.
26、(1)参加此次研学活动的老师有16人,学生有234人.(2)1;(3)学校共有4种租车方案,最少租车费用是2元.
【解析】
(1)设参加此次研学活动的老师有人,学生有人,根据题意列出方程组即可求解;
(2)利用租车总辆数=总人数÷35,再结合每辆车上至少要有2名老师,即可求解;
(3)设租35座客车辆,则需租30座的客车辆,根据题意列出不等式组即可求解.
【详解】
解:(1)设参加此次研学活动的老师有人,学生有人,
依题意,得:,
解得:.
答:参加此次研学活动的老师有16人,学生有234人.
(2)(辆)(人),(辆),
租车总辆数为1辆.
故答案为:1.
(3)设租35座客车辆,则需租30座的客车辆,
依题意,得:,
解得:.
为正整数,
,
共有4种租车方案.
设租车总费用为元,则,
,
的值随值的增大而增大,
当时,取得最小值,最小值为2.
学校共有4种租车方案,最少租车费用是2元.
本题考查的是二元一次方程组和不等式组的实际应用,熟练掌握两者是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲
11
9
6
9
14
7
7
7
10
10
乙
3
4
5
8
12
8
8
13
13
16
平均数
众数
中位数
方差
甲
9
乙
9
甲型客车
乙型客车
载客量(人/辆)
35
30
租金(元/辆)
400
320
相关试卷
这是一份2025届河南省信阳市浉河区九年级数学第一学期开学检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河南省信阳市浉河区第九中学数学九上开学检测试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2024年河南省信阳浉河区七校联考数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。