还剩24页未读,
继续阅读
河南省许昌鄢陵县联考2024年九年级数学第一学期开学质量检测试题【含答案】
展开这是一份河南省许昌鄢陵县联考2024年九年级数学第一学期开学质量检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为( )
A.y=2x﹣2B.y=2x+1C.y=2xD.y=2x+2
2、(4分)在平面直角坐标系中,点位于
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)下列命题中正确的是( )
A.一组对边相等,另一组对边平行的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分且相等的四边形是正方形
4、(4分)若,则下列不等式不成立的是( ).
A.B.C.D.
5、(4分)下列二次概式中,最简二次根式是( )
A.B.C.D.
6、(4分)定义:在同一平面内画两条相交、有公共原点的数轴x轴和y轴,交角a≠90°,这样就在平面上建立了一个斜角坐标系,其中w叫做坐标角,对于坐标平面内任意一点P,过P作y轴和x轴的平行线,与x轴、y轴相交的点的坐标分别是a和b,则称点P的斜角坐标为(a,b).如图,w=60°,点P的斜角坐标是(1,2),过点P作x轴和y轴的垂线,垂足分别为M、N,则四边形OMPN的面积是( )
A.B.C.D.3
7、(4分)如图,在平面直角坐标系中,点的坐标为,点的坐标为,以点为圆心,长为半径画弧,交轴的负半轴于点,则点的坐标为( )
A.B.C.D.
8、(4分)在同一平面直角坐标系中,函数与的图象可能是( )
A. B.
C. D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.1.其中正确的结论是_____.(把你认为正确结论序号都填上)
10、(4分)若分式有意义,则实数x的取值范围是_______.
11、(4分)如图,在△ABC中,点D,E,F分别是△ABC的边AB,BC,AC上的点,且DE∥AC,EF∥AB,要使四边形ADEF是正方形,还需添加条件:__________________.
12、(4分)已知:x=,y=.那么 ______.
13、(4分)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣3,x2=4,则m+n=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.
(1)求点G的坐标;
(2)求直线EF的解析式;
(3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.
15、(8分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE.、DE分别交AB于点O、F,且OP=OF,则BP的长为______.
16、(8分)如图:BE、CF是锐角△ABC的两条高,M、N分别是BC、EF的中点,若EF=6,BC=24.
(1)证明:∠ABE=∠ACF;
(2)判断EF与MN的位置关系,并证明你的结论;
(3)求MN的长.
17、(10分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为.
(1)画出关于轴的对称图形,并写出其顶点坐标;
(2)画出将先向下平移4个单位,再向右平移3单位得到的,并写出其顶点坐标.
18、(10分)如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东,南,西,北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的,小路与观赏亭的面积之和占草坪面积的,求小路的宽.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为,点P是y轴上一动点,当的周长最小时,线段OP的长为______.
20、(4分)已知点 A(2,a),B(3,b)在函数 y=1﹣x 的图象上,则 a 与 b 的大小关系是_____.
21、(4分)如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.
22、(4分)已如边长为的正方形ABCD中,C(0,5),点A在x轴上,点B在反比例函数y=(x>0,m>0)的图象上,点D在反比例函数y=(x<0,n<0)的图象上,那么m+n=______.
23、(4分)如图,点是函数的图象上的一点,过点作轴,垂足为点.点为轴上的一点,连结、.若的面积为,则的值为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)2019年的暑假,李刚和他的父母计划去新疆旅游,他们打算坐飞机到乌鲁木齐,第二天租用一辆汽车自驾出游.
根据以上信息,解答下列问题:
(1)设租车时间为天,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;
(2)请你帮助李刚,选择租用哪个公司的车自驾出游比较合算,并说明理由.
25、(10分)如图,点C,D在线段AB上,△PCD是等边三角形,△ACP∽△PDB,
(1)请你说明CD2=AC•BD;
(2)求∠APB的度数.
26、(12分)先化简,再求值:()÷,其中x=.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:
y=2(x+1)﹣1,即y=2x+1,
故选B.
考点:一次函数图象与几何变换
2、C
【解析】
根据第三象限内的点的横坐标小于零,纵坐标小于零,可得答案.
【详解】
解:在平面直角坐标系中,点位于第三象限,
故选:.
本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
3、D
【解析】
根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.
【详解】
A.一组对边相等且平行的四边形是平行四边形,所以A选项错误。
B. 对角线相等的平行四边形是矩形,所以B选项错误;
C. 对角线互相垂直的平行四边形是菱形,所以C选项错误;
D. 对角线互相垂直平分且相等的四边形是正方形,所以D选项正确;
故选D
此题考查命题与定理,解题关键在于掌握各判定法则
4、D
【解析】
试题分析:A、a<0,则a是负数,a+5<a+7可以看作5<7两边同时加上a,故A选项正确;
B、5a>7a可以看作5<7两边同时乘以一个负数a,不等号方向改变,故B选项正确;
C、5﹣a<7﹣a是不等号两边同时加上﹣a,不等号不变,故C选项正确;
D、a<0,>可以看作>两边同时乘以一个负数a,不等号方向改变,故D选项错误.
故选D.
考点:不等式的性质.
5、C
【解析】
根据最简二次根式的定义即可求解.
【详解】
A. =2,故错误;
B. =根号里含有小数,故错误;
C. 为最简二次根式,正确;
D. =2,故错误;
故选C.
此题主要考查最简二次根式定义,解题的关键是熟知最简二次根式的特点.
6、B
【解析】
添加辅助线,将四边形OMPN转化为直角三角形和平行四边形,因此过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,易证四边形OAPB是平行四边形,利用平行四边形的性质,可知OB=PA,OA=PB,由点P的斜角坐标就可求出PB、PA的长,再利用解直角三角形分别求出PN,NB,PM,AM的长,然后根据S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB , 利用三角形的面积公式和平行四边形的面积公式,就可求出结果.
【详解】
解:过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,
∴四边形OAPB是平行四边形,∠NBP=w=∠PAM=60°,
∴OB=PA,OA=PB
∵点P的斜角坐标为(1,2),
∴OA=1,OB=2,
∴PB=1,PA=2,
∵PM⊥x轴,PN⊥y轴,
∴∠PMA=∠PNB=90°,
在Rt△PAM中,∠PAM=60°,则∠APM=30°,
∴PA=2AM=2,即AM=1
PM=PAsin60°
∴PM=
∴S△PAM=
在Rt△PBN中,∠PBN=60°,则∠BPN=30°,
∴PB=2BN=1,即BN=
PN=PBsin60°
∴PN=
∴S△PBN=,
∵S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB
故答案为:B
本题考查了新概念斜角坐标系、图形与坐标、含30°角直角三角形的性质、三角函数、平行四边形的判定与性质、三角形面积与平行四边形面积的计算等知识,熟练掌握新概念斜角坐标系与含30°角直角三角形的性质是解题的关键.
7、B
【解析】
先根据勾股定理求出AB的长,由于AB=AC,可求出AC的长,再根据点C在x轴的负半轴上即可得出结论.
【详解】
解:∵点A的坐标为(4,0),点的坐标为(0,3),
∴OA=4,OB=3,
∴AB==5,
∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,
∴AC=5,
∴OC=1,
∴点C的坐标为(-1,0).
故选B.
本题考查的是勾股定理在直角坐标系中的运用,根据题意利用勾股定理求出AC的长是解答此题的关键.
8、C
【解析】
根据一次函数及二次函数的图像性质,逐一进行判断.
【详解】
解:A.由一次函数图像可知a>0,因此二次函数图像开口向上,但对称轴应在y轴左侧,故此选项错误;
B. 由一次函数图像可知a<0,而由二次函数图像开口方向可知a>0,故此选项错误;
C. 由一次函数图像可知a<0,因此二次函数图像开口向下,且对称轴在y轴右侧,故此选项正确;
D. 由一次函数图像可知a>0,而由二次函数图像开口方向可知a<0,故此选项错误;
故选:C.
本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①②④.
【解析】
①易证△ABD∽△ADF,结论正确;
②由①结论可得:AE=,再确定AD的范围为:3≤AD<5,即可证明结论正确;
③分两种情况:当BD<4时,可证明结论正确,当BD>4时,结论不成立;故③错误;
④△DCE为直角三角形,可分两种情况:∠CDE=90°或∠CED=90°,分别讨论即可.
【详解】
解:如图,在线段DE上取点F,使AF=AE,连接AF,
则∠AFE=∠AEF,
∵AB=AC,
∴∠B=∠C,
∵∠ADE=∠B=a,
∴∠C=∠ADE=a,
∵∠AFE=∠DAF+∠ADE,∠AEF=∠C+∠CDE,
∴∠DAF=∠CDE,
∵∠ADE+∠CDE=∠B+∠BAD,
∴∠CDE=∠BAD,
∴∠DAF=∠BAD,
∴△ABD∽△ADF
∴,即AD2=AB•AF
∴AD2=AB•AE,
故①正确;
由①可知:,
当AD⊥BC时,由勾股定理可得:
,
∴,
∴,即,故②正确;
如图2,作AH⊥BC于H,
∵AB=AC=5,
∴BH=CH=BC=4,
∴,
∵AD=AD′=,
∴DH=D′H=,
∴BD=3或BD′=5,CD=5或CD′=3,
∵∠B=∠C
∴△ABD≌△DCE(SAS),△ABD′与△D′CE不是全等形
故③不正确;
如图3,AD⊥BC,DE⊥AC,
∴∠ADE+∠DAE=∠C+∠DAE=90°,
∴∠ADE=∠C=∠B,
∴BD=4;
如图4,DE⊥BC于D,AH⊥BC于H,
∵∠ADE=∠C,
∴∠ADH=∠CAH,
∴△ADH∽△CAH,
∴,即,
∴DH=,
∴BD=BH+DH=4+==6.1,
故④正确;
综上所述,正确的结论为:①②④;
故答案为:①②④.
本题属于填空题压轴题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形判定和性质,动点问题和分类讨论思想等;解题时要对所有结论逐一进行分析判断,特别要注意分类讨论.
10、
【解析】
由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.
解:∵分式有意义,
∴x-1≠2,即x≠1.
故答案为x≠1.
本题主要考查分式有意义的条件:分式有意义,分母不能为2.
11、∠A=90°,AD=AF(答案不唯一)
【解析】
试题解析:要证明四边形ADEF为正方形,
则要求其四边相等,AB=AC,点D、E、F分别是△ABC的边AB、BC、AC的中点,
则得其为平行四边形,
且有一角为直角,
则在平行四边形的基础上得到正方形.
故答案为△ABC为等腰直角三角形,且AB=AC,∠A=90°(此题答案不唯一).
12、98
【解析】
把x与y分母有理化,再计算x+y和xy,原式通分整理并利用x+y和xy的结果整体代入计算即可得到结果.
【详解】
解:∵,
,
∴,,
∴=.
故答案为:98.
此题考查了分式的化简,平方差公式的应用,熟练掌握运算法则是解本题的关键.
13、-1
【解析】
根据根与系数的关系得出-3+4=-m,-3×4=n,求出即可.
【详解】
解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣3,x2=4,
∴﹣3+4=﹣m,﹣3×4=n,
解得:m=﹣1,n=﹣12,
∴m+n=﹣1,
故答案为:﹣1.
本题考查了根与系数的关系的应用,能根据根与系数的关系得出-3+4=-m,-3×4=n是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)G点的坐标为:(3,4-);(2)EF的解析式为:y=x+4-2;(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)
【解析】
分析:(1)点G的横坐标与点N的横坐标相同,易得EM为BC的一半减去1,为1,EG=CE=2,利用勾股定理可得MG的长度,4减MG的长度即为点G的纵坐标;
(2)由△EMG的各边长可得∠MEG的度数为60°,进而可求得∠CEF的度数,利用相应的三角函数可求得CF长,4减去CF长即为点F的纵坐标,设出直线解析式,把E,F坐标代入即可求得相应的解析式;
(3)以点F为圆心,FG为半径画弧,交直线EF于两点;以点G为圆心,FG为半径画弧,交直线EF于一点;做FG的垂直平分线交直线EF于一点,根据线段的长度和与坐标轴的夹角可得相应坐标.
详解:(1)易得EM=1,CE=2,
∵EG=CE=2,
∴MG=,
∴GN=4-;
G点的坐标为:(3,4-);
(2)易得∠MEG的度数为60°,
∵∠CEF=∠FEG,
∴∠CEF=60°,
∴CF=2,
∴OF=4-2,
∴点F(0,4-2).
设EF的解析式为y=kx+4-2,
易得点E的坐标为(2,4),
把点E的坐标代入可得k=,
∴EF的解析式为:y=x+4-2.
(3)P1(1,4-)、P2(,7-2),
P3(-,2-1)、P4(3,4+)
点睛:本题综合考查了折叠问题和相应的三角函数知识,难点是得到关键点的坐标;注意等腰三角形的两边相等有多种不同的情况.
15、
【解析】
根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP,根据全等三角形的性质可得出OE=OB、EF=BP,设BF=EP=CP=x,则AF=4-x,BP=3-x=EF,DF=DE-EF=4-(3-x)=x+1,依据Rt△ADF中,AF2+AD2=DF2,求出x的值,即可得出BP的长.
【详解】
解:根据折叠可知:△DCP≌△DEP,
∴DC=DE=4,CP=EP.
在△OEF和△OBP中,,
∴△OEF≌△OBP(AAS),
∴OE=OB,EF=BP,
∴BF=EP=CP,
设BF=EP=CP=x,则AF=4-x,BP=3-x=EF,DF=DE-EF=4-(3-x)=x+1,
∵∠A=90°,
∴Rt△ADF中,AF2+AD2=DF2,
即(4-x)2+32=(1+x)2,
解得:x=,
∴BP=3-x=3-=,
故答案为:.
本题考查了翻折变换的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用,熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键.
16、(1)证明见解析;(2)垂直平分.(3).
【解析】
(1)依据、是锐角的两条高,可得,,进而得出;
(2)连接、,根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形三线合一的解答;
(3)求出、,然后利用勾股定理列式计算即可得解.
【详解】
解:(1)、是锐角的两条高,
,,
;
(2)垂直平分.
证明:如图,连接、,
、是锐角的两条高,是的中点,
,
是的中点,
垂直平分;
(3),,
,,
在Rt△EMN中,由勾股定理得,.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,勾股定理,熟记性质并作辅助线构造成等腰三角形是解题的关键.
17、(1)图详见解析,;(2)图详见解析,
【解析】
(1)分别作出,,的对应点,,即可.
(2)分别作出,,的对应点,,即可.
【详解】
解:(1)△如图所示.,,;
(2)△如图所示.,,.
本题考查轴对称变换,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
18、小路的宽为2米.
【解析】
根据“小路与观赏亭的面积之和占草坪面积的”,建立方程求解即可得出结论.
【详解】
设小路的宽为x米,
由题意得,(5x)2+(40+50)x﹣2×x×5x=×40×50
解得,x=2或x=﹣8(不合题意,舍去)
答:小路的宽为2米.
考查一元二次方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据题意可以得到点A、B、C的坐标和点D的坐标,然后最短路径问题可以求得点P的坐标,从而可以求得OP的长.
【详解】
解:作点D关于y轴的对称点,连接交y轴于点P,则点P即为所求,
直线AC的解析式为,
当时,,当时,,
点A的坐标为,点C的坐标为,
点D的坐标为,点B的坐标为,
点的坐标为,
设过点B和点的直线解析式为,
,
解得,,
过点B和点的直线解析式为,
当时,,
即点P的坐标为,
.
故答案为.
本题考查一次函数的性质、矩形的性质、最短路线问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
20、a>b.
【解析】
分别把点A(2,a),B(3,b)代入函数y=1-x,求出a、b的值,并比较出其大小即可.
【详解】
∵点A(2,a),B(3,b)在函数y=1−x的图象上,
∴a=−1,b=−2,
∵−1>−2,
∴a>b.
故答案为:a>b.
此题考查一次函数图象上点的坐标特征,解题关键在于把A,B代入方程.
21、18
【解析】
利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长
【详解】
∵CE平分∠BCD交AD边于点E,
∴.∠ECD=∠ECB
∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC
∴∠DEC=∠ECB,
∴∠DEC=∠DCE
∴DE=DC
∵AD=2AB
∴AD=2CD
∴AE=DE=AB=3
∴AD=6
∴四边形ABCD的周长为:2×(3+6)=18.
故答案为:18.
此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行
22、±5
【解析】
由勾股定理可求点A坐标,分两种情况讨论,利用全等三角形的判定和性质求出B、D的坐标,即可求解.
【详解】
解:设点A(x,0)
∴AC2=OA2+OC2,
∴26=25+OA2,
∴OA=1
∴点A(1,0),或(-1,0)
当点A(1,0)时,
如图,过点B作BF⊥x轴,过点C作CE⊥y轴,与BF交于点E,过点D作DH⊥x轴,交CE于点G,
∵∠CBE+∠ABF=90°,且∠CBE+∠ECB=90°
∴∠ECB=∠ABF,且BC=AB,∠E=∠AFB=90°
∴△ABF≌△BCE(AAS)
∴BE=AF,BF=CE
∵OF=OA+AF
∴CE=OF=1+BE=BF
∴BF+BE=1+BE+BE=5
∴BE=2,
∴BF=3
∴点B坐标(3,3)
∴m=3×3=9,
∵A(1,0), C(0,5), B(3,3),
∴点D(1+0-3,0+5-3),即(-2,2)
∴n=-2×2=-4
∴m+n=5
若点A(-1,0)时,
同理可得:B(2,2),D(-3,3),
∴m=4,n=-9
∴m+n=-5
故答案为:±5
本题考查了反比例函数图象上点的坐标特征,正方形的性质,全等三角形的判定和性质,利用分类讨论思想解决问题和利用方程思想解决问题是本题的关键.
23、
【解析】
连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.
【详解】
解:连结OA,如图
∵AB⊥y轴,
∴OC∥AB,
∴S△OAB=S△ABC=4,
而S△OAB=|k|,
∴|k|=4,
∵k<0,
∴k=﹣8
故答案为﹣8
本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)租用乙公司的车比较合算,理由见解析.
【解析】
(1)设,将代入即可求出关于的函数表达式,然后设,把,代入即可求出关于的函数表达式;
(2)根据题意,分别求出、和时,x的取值范围,从而得出结论.
【详解】
解:(1)设,把代入得,.
∴.
设,把,代入得,
解得
∴.
(2)当,即时,;
当,即时,;
当,即时,.
所以,他们自驾出游大于5天时,选择方案二,租用乙公司的车比较合算;他们自驾出游等于5天时,两家公司的费用相同;他们自驾出游小于5天时,选择方案一,租用甲公司的车比较合算.
此题考查的是一次函数的应用,掌握利用待定系数法求一次函数解析式是解决此题的关键.
25、(1)见解析;(2)∠APB=120°.
【解析】
(1)由△ACP∽△PDB,根据相似三角形的对应边成比例,可得AC:PD=PC:BD,又由△PCD是等边三角形,即可证得CD2=AC•BD;
(2)由△ACP∽△PDB,根据相似三角形对应角相等,可得∠A=∠BPD,又由△PCD是等边三角形,即可求得∠APB的度数.
【详解】
(1)证明:∵△ACP∽△PDB,
∴AC:PD=PC:BD,
∴PD•PC=AC•BD,
∵△PCD是等边三角形,
∴PC=CD=PD,
∴CD2=AC•BD;
(2)解:∵△ACP∽△PDB,
∴∠A=∠BPD,
∵△PCD是等边三角形,
∴∠PCD=∠CPD=60°,
∴∠PCD=∠A+∠APC=60°,
∴∠APC+∠BPD=60°,
∴∠APB=∠APC+∠CPD+∠BPD=120°.
此题考查了相似三角形的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
26、
【解析】
根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【详解】
解:
,
当x=时,
原式.
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
河南省许昌市襄城县2025届九年级数学第一学期开学联考模拟试题【含答案】:
这是一份河南省许昌市襄城县2025届九年级数学第一学期开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省许昌市名校2024年数学九年级第一学期开学达标检测模拟试题【含答案】:
这是一份河南省许昌市名校2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省临颍县联考2024年数学九年级第一学期开学质量检测模拟试题【含答案】:
这是一份河南省临颍县联考2024年数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。