河南省郑州市八十二中学2024年数学九年级第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形ABCD中,对角线相交于点,则AB的长是
A.3cmB.6cmC.10cmD.12cm
2、(4分)四边形ABCD的对角线AC与BD相等且互相垂直,则顺次连接这个四边形四边的中点得到四边形是( )
A.平行四边形B.矩形C.菱形D.正方形
3、(4分)若a>b,则下列式子正确的是()
A.a﹣4>b﹣3B.a<bC.3+2a>3+2bD.﹣3a>﹣3b
4、(4分)若反比例函数的图象在第二、四象限,则的值是( )
A.-1或1B.小于的任意实数C.-1D.不能确定
5、(4分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为( )
A.36件B.37件C.38件D.38.5件
6、(4分)如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为( )
A.70°B.60°C.50°D.80°
7、(4分)在直角坐标系中,函数与的图像大数是( )
A.B.
C.D.
8、(4分)如图,直线的解析式为,直线的解析式为,则不等式的解集是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形的对角线相交于点,若,则菱形的面积=____.
10、(4分)在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.
11、(4分)在□ABCD中,O是对角线的交点,那么____.
12、(4分)已知实数m,n满足3m2+6m-5=0,3n2+6n-5=0,则________
13、(4分)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则这两人10次射击命中环数的方差____.(填“>”、“<”或“=”)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,过点A(0,3)的一次函数y1=kx+b(k≠0)的图象与正比例函数y2=2x的图象相交于点B,且点B的横坐标是1.
(1)求点B的坐标及k、b的值;
(2)若该一次函数的图象与x轴交于D点,求△BOD的面积
(3)当y1≤y2时,自变量x的取值范围为 .
15、(8分)计算:
(1);
(2).
16、(8分)如图,在平面直角坐标系xOy中,A(0,5),直线x=-5与x轴交于点D,直线y=-x-与x轴及直线x=-5分别交于点C,E.点B,E关于x轴对称,连接AB.
(1)求点C,E的坐标及直线AB的解析式;
(2)若S=S△CDE+S四边形ABDO,求S的值;
(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积,如此不更快捷吗?”但大家经反复验算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.
17、(10分)计算:
;
。
18、(10分)在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)根据已知条件画出图形;
(2)求证:四边形AFCE是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点(-1,y1),(2,y2),(3,y3)在反比例函数y=的图象上,则用“<”连接y1,y2,y3的结果为_______.
20、(4分)若,则等于______.
21、(4分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若
DE=5,则AB的长为 ▲ .
22、(4分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处若,则为______ .
23、(4分)在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与轴交于点.
(1)求该抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标;
(3)作直线BC,若点Q是直线BC下方抛物线上的一动点,三角形QBC面积是否有最大值,若有,请求出此时Q点的坐标;若没有,请说明理由.
25、(10分)如图1,在直角坐标系中放入一个边长AB长为3,BC长为5的矩形纸片ABCD,使得BC、AB所在直线分别与x、y轴重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.
(1)求折痕AE所在直线与x轴交点的坐标;
(2)如图2,过D作DG⊥AF,求DG的长度;
(3)将矩形ABCD水平向右移动n个单位,则点B坐标为(n,1),其中n>1.如图3所示,连接OA,若△OAF是等腰三角形,试求点B的坐标.
26、(12分)如图,在△ABC中,AB=BC,∠ABC=84°,点D是AC的中点,DE∥BC,求∠EDB的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题解析:∵四边形ABCD是矩形,
∴OA=OC=OB=OD=3,
∴△AOB是等边三角形,
∴AB=OA=3,
故选A.
点睛:有一个角等于得等腰三角形是等边三角形.
2、D
【解析】
根据四边形对角线相等且互相垂直,运用三角形中位线平行于第三边证明四个角都是直角且邻边相等,判断是正方形
【详解】
解:如图:
∵E、F、G、H分别为各边中点,
∴EF∥GH∥DB,EF=GH=DB,
EH=FG=AC,EH∥FG∥AC,
∴四边形EFGH是平行四边形,
∵DB⊥AC,
∴EF⊥EH,
∴四边形EFGH是矩形.
同理可证EH=AC,
∵AC=BD,
∴EH=EF
∴矩形EFGH是正方形,
故选:D.
本题考查的是中点四边形,解题时,主要是利用了三角形中位线定理的性质,比较简单,也可以利用三角形的相似,得出正确结论.
3、C
【解析】
根据不等式的性质将a>b按照A、B、C、D四个选项的形式来变形看他们是否成立.
【详解】
解:A、a>b⇒a﹣4>b﹣4或者a﹣3>b﹣3,故A选项错误;
B、a>b⇒a>b,故B选项错误;
C、a>b⇒2a>2b⇒3+2a>3+2b,故C选项正确;
D、a>b⇒﹣3a<﹣3b,故D选项错误.
故选C.
考点:不等式的性质.
4、C
【解析】
根据反比例函数的定义列出方程且求解即可.
【详解】
解:是反比例函数,
,,
解之得.
又因为图象在第二,四象限,
所以,
解得,即的值是.
故选:.
对于反比例函数.(1),反比例函数图像分布在一、三象限;(2) ,反比例函数图像分布在第二、四象限内.
5、B
【解析】
根据加权平均数的公式进行计算即可得.
【详解】
=37,
即这周里张海日平均投递物品件数为37件,
故选B.
本题考查了加权平均数的计算,熟知加权平均数的计算公式是解题的关键.
6、A
【解析】
根据题意尺规作图得到NM是AC的垂直平分线,故AD=CD,则∠C=∠DAC,再利用三角形的内角和求出∠BAC,故可求出∠BAD.
【详解】
根据题意尺规作图得到NM是AC的垂直平分线,
故AD=CD,
∴∠DAC=∠C=30°,
∵∠B=50°,∠C=30°
∴∠BAC=180°-50°-30°=100°,
∴∠BAD=∠BAC-∠DAC=70°.
故选A.
此题主要考查垂直平分线的性质,解题的关键是熟知三角形的内角和与垂直平分线的性质.
7、B
【解析】
根据四个选项图像可以判断 过原点且k<0, ,-k>0 即可判断.
【详解】
解:A . 与图像增减相反,得到k<0,所以 与y轴交点大于0 故错误;
B. 与图像增减相反,得到k<0,所以 与y轴交点大于0 故正确;
C. 与图像增减相反,为递增一次函数且不过原点,故错误;
D .过原点,而图中两条直线都不过原点,故错误.
故选 B
此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.
8、D
【解析】
由图象可以知道,当x=m时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.
【详解】
不等式对应的函数图象是直线在直线“下方”的那一部分,
其对应的的取值范围,构成该不等式的解集.所以,解集应为,
直线过这点,把代入易得,.
故选:D.
此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3.
【解析】
先求出菱形对角线AC和BD的长度,利用菱形面积等于对角线乘积的一半求解即可.
【详解】
因为四边形ABCD是菱形,
所以AC⊥BD.
在Rt△AOB中,利用勾股定理求得BO=1.
∴BD=6,AC=2.
∴菱形ABCD面积为×AC×BD=3.
故答案为:3.
本题主要考查了菱形的性质,解题的关键是熟记菱形面积的求解方法,运用对角线求解面积是解题的最优途径.
10、
【解析】
由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.
【详解】
∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.
∴从中随机摸出一个球,摸到红球的概率是:
故答案为:
此题考查概率公式,掌握运算法则是解题关键
11、
【解析】
由向量的平行四边形法则及相等向量的概念可得答案.
【详解】
解:因为:□ABCD,
所以,,
所以:.
故答案为:.
本题考查向量的平行四边形法则,掌握向量的平行四边形法则是解题的关键.
12、
【解析】
首先根据二元一次方程的根与系数的关系,表示m+n和mn的形式,再代入计算即可.
【详解】
根据题意可得,3m2+6m-5=0,3n2+6n-5=0
所以可得m和n是方程的两个根
所以m+n=-2,mn=
原式=
故答案为
本题主要考查根与系数的关系,其中 这是关键,应当熟练掌握.
13、>
【解析】
先分别求出各自的平均数,再根据方差公式求出方差,即可作出比较.
【详解】
甲的平均数
则
乙的平均数
则
所以
本题属于基础应用题,只需学生熟练掌握方差的求法,即可完成.
三、解答题(本大题共5个小题,共48分)
14、(1)B(1,2),,;(2)△BOD的面积3;(3)x≥1.
【解析】
(1)先利用正比例函数解析式确定B点坐标,然后利用待定系数法求一次函数解析式,从而得到k、b的值;
(2)先确定D点坐标,然后利用三角形面积公式计算△BOD的面积;
(3)结合函数图象,写出自变量x的取值范围.
【详解】
(1)当x=1时,y2=2x=2,则B(1,2),
把A(0,3),B(1,2)代入y=kx+b得
,解得,
所以一次函数解析式为y=-x+3;
(2)当x=0时,-x+3=0,解得x=3,则D(3,0),
所以△BOD的面积=×3×2=3;
(3)当y1≤y2时,自变量x的取值范围为x≥1.
故答案为x≥1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
15、(1)5;(2)6+2
【解析】
(1)先把各二次根式化为最简二次根式,然后合并即可;
(2)利用完全平方公式和平方差公式计算.
【详解】
解:(1)原式=2+4-
=5;
(2)原式=2+2+3-(2-3)
=5+2+1
=6+2.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.利用乘法公式计算是解决(2)小题的关键.
16、(1)C(-13,0),E(-5,-3),;(2)32;(3)见解析.
【解析】
(1)利用坐标轴上点的特点确定出点C的坐标,再利用直线的交点坐标的确定方法求出点E坐标,进而得到点B坐标,最后用待定系数法求出直线AB解析式;
(2)直接利用直角三角形的面积计算方法和直角梯形的面积的计算即可得出结论,
(3)先求出直线AB与x轴的交点坐标,判断出点C不在直线AB上,即可.
【详解】
(1)在直线中,令y=0,则有0=,
∴x=﹣13,
∴C(﹣13,0),
令x=﹣5,代入,解得y=﹣3,
∴E(﹣5,﹣3),
∵点B,E关于x轴对称,
∴B(﹣5,3),
∵A(0,5),
∴设直线AB的解析式为y=kx+5,
∴﹣5k+5=3,
∴k=,
∴直线AB的解析式为;
(2)由(1)知E(﹣5,﹣3),
∴DE=3,
∵C(﹣13,0),
∴CD=﹣5﹣(﹣13)=8,
∴S△CDE=CD×DE=12,
由题意知,OA=5,OD=5,BD=3,
∴S四边形ABDO=(BD+OA)×OD=20,
∴S=S△CDE+S四边形ABDO=12+20=32;
(3)由(2)知,S=32,
在△AOC中,OA=5,OC=13,
∴S△AOC=OA×OC==32.5,
∴S≠S△AOC,
理由:由(1)知,直线AB的解析式为,令y=0,则0=,
∴x=﹣≠﹣13,
∴点C不在直线AB上,
即:点A,B,C不在同一条直线上,
∴S△AOC≠S.
此题是一次函数综合题,主要考查了坐标轴上点的特点,对称的性质,待定系数法,三角形,直角梯形的面积的计算,解(1)的关键是确定出点C,E的坐标,解(2)的关键是特殊几何图形的面积的计算,解(3)的关键是确定出直线AB与x轴的交点坐标,是一道常规题.
17、(1);(2).
【解析】
先把二次根式化为最简二次根式,然后合并即可;
先把二次根式化为最简二次根式,然后把可能内合并后进行二次根式的除法运算.
【详解】
解:原式
;
原式
.
本题考查二次根式的混合运算,解题关键在于灵活运用二次根式的性质.
18、(1)见解析;(2)见解析
【解析】
(1)根据已知条件画出图形即可;
(2)因为AF∥EC,得出∠DFA=∠DEC,∠DAF=∠DCE,因为D是AC的中点,可得DA=DC,推出△DAF≌△DCE,得到AF=CE,因为AF∥EC,即四边形AFCE是平行四边形;
【详解】
解:
(1)根据已知条件画出图形如下:
(2)证明:∵AF∥EC,
∴∠DFA=∠DEC,∠DAF=∠DCE,
∵D是AC的中点,
∴DA=DC,
∴△DAF≌△DCE,
∴AF=CE;
又∵AF∥EC,
∴四边形AFCE是平行四边形;
本题主要考查了平行四边形的判定与性质,掌握平行四边形的判定是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y2<y3<y1
【解析】
试题分析:∵反比例函数y=中,﹣k2﹣1<0,
∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大,
∵﹣1<0,
∴点A(﹣1,y1)位于第二象限,
∴y1>0;
∵0<2<3,
∴B(1,y2)、C(2,y3)在第四象限,
∵2<3,
∴y2<y3<0,
∴y2<y3<y1.
考点:反比例函数图象上点的坐标特征.
20、
【解析】
依据比例的基本性质,即可得到5a=7b,进而得出=.
【详解】
解:∵,
∴5a-5b=2b,
即5a=7b,
∴=,
故答案为:.
本题主要考查了分式的值,解决问题的关键是利用比例的基本性质进行化简变形.
21、1
【解析】
解:∵在△ABC中,AD⊥BC,垂足为D,
∴△ADC是直角三角形;
∵E是AC的中点.
∴DE=AC(直角三角形的斜边上的中线是斜边的一半);
又∵DE=5,AB=AC,
∴AB=1;
故答案为:1.
22、105°
【解析】
由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.
【详解】
∵AD∥BC,
∴∠ADB=∠DBG,
由折叠可得∠ADB=∠BDG,
∴∠DBG=∠BDG,
又∵∠1=∠BDG+∠DBG=50°,
∴∠ADB=∠BDG=25°,
又∵∠2=50°,
∴△ABD中,∠A=105°,
∴∠A′=∠A=105°,
故答案为:105°.
本题主要考查了翻折变换(折叠问题),平行四边形的性质,熟练掌握折叠性质和平行四边形额性质是解答本题的关键.
23、k<3
【解析】
试题解析:∵一次函数中y随x的增大而减小,
∴
解得,
故答案是:k
【详解】
请在此输入详解!
二、解答题(本大题共3个小题,共30分)
24、(1)y=x2-2x-2;(2)P点的坐标为( 0,)或( 0,);(2)点Q(, - ).
【解析】
(1)把A(﹣1,0),B(2,0)两点代入y=-x2+bx+c即可求出抛物线的解析式;
(2)由A(﹣1,0),B(2,0)可得AB=1,由△PAB是以AB为腰的等腰三角形,可分两种情况PA=AB=1时,PB=AB=1时,根据勾股定理分别求出OP的长即可求解;
(2)由抛物线得C(0,-2),求出直线BC的解析式,过点Q作QM∥y轴,交BC于点M,设Q(x,x2-2x-2),则M(x,x-2),根据三角形QBC面积S=QM∙OB得出二次函数解析式,根据二次函数的性质即可求出Q点坐标及△QBC面积的最大值
【详解】
解:(1)因为抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,
所以可得解得.
所以该抛物线的解析式为:y=x2-2x-2;
(2)由A(﹣1,0),B(2,0)可得AB=1.
因为P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,可得PA=1或PB=1.
当PA=1时,因为A(﹣1,0),所以OP==,所以P( 0,);
当PB=1时,因为B(2,0),所以OP==,所以P( 0,);
所以P点的坐标为( 0,)或( 0,);
(2)对于y=x2-2x-2,当x=0时,y= -2,所以点C(0,-2)
设直线BC的解析式为:y=kx+b(k≠0),B(2,0),C(0,-2)
可得解得所以直线BC的解析式为:y=x-2.
过点Q作QM∥y轴,交BC于点M,设Q(x,x2-2x-2),则M(x,x-2).
所以三角形QBC的面积为S=QM∙OB=[( x-2)-(x2-2x-2)]×2
= -x2+x.
因为a=-<0,函数图象开口方向向下,所以函数有最大值,即三角形QBC面积有最大值.此时,x= -=,此时Q点的纵坐标为-,所以点Q(,-).
本题考查二次函数综合,用到的知识点是二次函数的图象与性质、三角形的面积、等腰三角形的判定、直线与抛物线的交点,关键是理解坐标与图形性质,会利用分类讨论的思想解决数学问题.
25、(2)折痕AE所在直线与x轴交点的坐标为(9,2);(2)3;(3)点B(4,2)或B(2,2).
【解析】
(2)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=5,EF=DE,进而求出BF的长,即可得出E点的坐标,进而得出AE所在直线与x轴交点的坐标;
(2)判断出△DAG≌△AFB,即可得出结论;
(3)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可.
【详解】
解:(2)∵四边形ABCD是矩形,
∴AD=CB=5,AB=DC=3,∠D=∠DCB=∠ABC=92°,
由折叠对称性:AF=AD=5,EF=DE,
在Rt△ABF中,BF==4,
∴CF=2,
设EC=x,则EF=3﹣x,
在Rt△ECF中,22+x2=(3﹣x)2,
解得:x=,
∴E点坐标为:(5,),
∴设AE所在直线解析式为:y=ax+b,
则,
解得:,
∴AE所在直线解析式为:y=x+3,
当y=2时,x=9,
故折痕AE所在直线与x轴交点的坐标为:(9,2);
(2)在△DAG和△AFB中
∵,
∴△DAG≌△AFB,
∴DG=AB=3;
(3)分三种情况讨论:
若AO=AF,
∵AB⊥OF,
∴BO=BF=4,
∴n=4,
∴B(4,2),
若OF=FA,则n+4=5,
解得:n=2,
∴B(2,2),
若AO=OF,
在Rt△AOB中,AO2=OB2+AB2=m2+9,
∴(n+4)2=n2+9,
解得:n=(n<2不合题意舍去),
综上所述,若△OAF是等腰三角形,n的值为n=4或2.
即点B(4,2)或B(2,2).
此题是四边形综合题,主要考查了待定系数法,折叠的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,利用勾股定理求出CE是解本题的关键.
26、∠EDB=42°.
【解析】
试题分析:因为BD是∠ABC的平分线,所以∠ABD=∠CBD,所以∠DBC=84°÷2=42°,因为DE∥BC,所以∠EDB=∠DBC=42°.
试题解析:
∵BD是∠ABC的平分线,
∴∠ABD=∠CBD,
∴∠DBC=84°÷2=42°,
∵DE∥BC,
∴∠EDB=∠DBC=42°.
点睛:掌握角平分线的性质以及平行线的性质.
题号
一
二
三
四
五
总分
得分
批阅人
河南省郑州市中学牟县2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份河南省郑州市中学牟县2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省郑州市郑中学国际学校2024年九年级数学第一学期开学复习检测模拟试题【含答案】: 这是一份河南省郑州市郑中学国际学校2024年九年级数学第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省郑州市桐柏一中学2025届数学九年级第一学期开学达标检测试题【含答案】: 这是一份河南省郑州市桐柏一中学2025届数学九年级第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。