终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    河南省郑州市金水区为民中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】

    立即下载
    加入资料篮
    河南省郑州市金水区为民中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】第1页
    河南省郑州市金水区为民中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】第2页
    河南省郑州市金水区为民中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省郑州市金水区为民中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】

    展开

    这是一份河南省郑州市金水区为民中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列选项中的图形,不属于中心对称图形的是( )
    A. B. C. D.
    2、(4分)如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为,则所有正方形的面积的和是 .
    A.28B.49C.98D.147
    3、(4分)如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )
    A.24、25B.25、24C.25、25D.23、25
    4、(4分)如图,将等边△ABC沿直线BC平移到△DEF,使点E与点C重合,连接BD,若AB=2,则BD的长为( )
    A.2B.C.3D.2
    5、(4分)在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm 变成 2cm,那么这次复印出来的多边形图案面积是原来的( )
    A.1 倍B.2 倍
    C.3 倍D.4 倍
    6、(4分)电话每台月租费元,市区内电话(三分钟以内)每次元,若某台电话每次通话均不超过分钟,则每月应缴费(元)与市内电话通话次数之间的函数关系式是( )
    A.B.
    C.D.
    7、(4分)如图,在平行四边形ABCD中,∠BAC=78°,∠ACB=38°,则∠D的度数是( )
    A.52°B.64°C.78°D.38°
    8、(4分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )
    A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣ab
    C.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)当x=时,二次根式的值为_____.
    10、(4分)已知一次函数y=kx+2的图象与x轴交点的横坐标为6,则当-3≤x≤3时,y的最大值是______.
    11、(4分)如图,矩形的对角线相交于点,过点作交于点,若,的面积为6,则___.
    12、(4分)用一块长80cm,宽60cm的纸板,在四个角截去四个相同的小正方形,然后做成一个底面积为1500cm2的无盖长方体纸盒,则截去的小正方形的边长为___________.
    13、(4分)在△ABC中,点D,E分别是AB,AC的中点,且DE=3cm,则BC=_____________cm;
    三、解答题(本大题共5个小题,共48分)
    14、(12分)自年月日日起,合肥市进入冰雪灾害天气,如图,一棵大树在离地面米处折断,树的顶端落在离树干底部米处,求这棵树折断之前的高度.
    15、(8分)某文具店从市场得知如下信息:
    该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.
    (1)求y与x之间的函数关系式;
    (2)若全部销售完后,获得的利润为1200元,则购进A、B两种品牌计算器的数量各是多少台?
    (3)若购进计算器的资金不超过4100元,求该文具店可获得的最大利润是多少元?
    16、(8分)直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.
    (1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);
    ②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);
    (2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);
    (3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?
    17、(10分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F同时出发移动t秒.
    (1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是 ,始终保持不变;
    (2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;
    (3)如图3,点G,H分别在边AB,CD上,且GH=cm,连接EF,当EF与GH的夹角为45°,求t的值.
    18、(10分)如图,在ABC中,∠C=90º,BD是ABC的一条角一平分线,点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形,
    (1)求证:点O在∠BAC的平分线上;
    (2)若AC=5,BC=12,求OE的长
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)菱形的周长为8cm,一条对角线长2cm,则另一条对角线长为 cm.。
    20、(4分)若一元二次方程有两个相等的实数根,则的值是________。
    21、(4分)若,则a与b的大小关系为a_____b(填“>”、“<”或“=”)
    22、(4分)对一种环保电动汽车性能抽测,获得如下条形统计图.根据统计图可估计得被抽检电动汽车一次充电后平均里程数为______.
    23、(4分) 若关于x的一元一次不等式组无解,则a的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)限速安全驾,文明靠大家,根据道路管理条例规定,在某段笔直的公路L上行驶的车辆,限速60千米时,一观测点M到公路L的距离MN为30米,现测得一辆汽车从A点到B点所用时间为5秒,已知观测点M到A,B两点的距离分别为50米、34米,通过计算判断此车是否超速.
    25、(10分)如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.
    (1)求∠EDF= (填度数);
    (2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;
    (3)①若AB=6,G是AB的中点,求△BFG的面积;
    ②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.
    26、(12分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
    (Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;
    (Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
    (Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据中心对称图形特点分别分析判断,中心对称图形绕一个点旋转180°后图形仍和原来图形重合.
    【详解】
    解:A、属于中心对称图形,不符合题意;
    B、不是中心对称图形,符合题意;
    C、是中心对称图形,不符合题意;
    D、是中心对称图形,不符合题意.
    故答案为:B
    本题考查的中心对称图形,由其特点进行判断是解题的关键.
    2、D
    【解析】
    根据勾股定理即可得到正方形A的面积加上B的面积等于E的面积,同理,C,D的面积的和是F的面积,E,F的面积的和是M的面积.即可求解.
    【详解】
    解:根据勾股定理可得:SA+SB=SE,SC+SD=SM,SE+SF=SM
    所以,所有正方形的面积的和是正方形M的面积的3倍:即49×3=147cm1.
    故选:D
    理解正方形A,B的面积的和是E的面积是解决本题的关键.若把A,B,E换成形状相同的另外的图形,这种关系仍成立.
    3、C
    【解析】
    中位数:一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数),叫做这组数据的中位数.众数:一组数据中出现次数最多的那个数据叫做这组数据的众数.
    【详解】
    已知可知这组数据中出现次数最多的是25,次数为5,所以这组数据的众数是25.
    由于2+5+3+4=14,因此中位数等于将这组数据按从小到大的顺序排列后中间两数
    的平均数,而这组数据从小到大排列后位于第7、8位的数都是25.
    故这组数据的中位数为25.
    故选C.
    此题考查中位数和众数的概念,解题关键在于掌握其概念.
    4、A
    【解析】
    利用平移的性质得出,、的长,得,,可得结论.
    【详解】
    解:由平移得:,
    是等边三角形,且,
    ,,



    中,,

    故选:.
    此题主要考查了平移的性质以及等边三角形的性质,根据题意得出是解决问题的关键.
    5、D
    【解析】
    复印前后的多边形按照比例放大与缩小,因此它们是相似多边形,本题按照相似多边形的性质求解.
    【详解】
    由题意可知,相似多边形的边长之比=相似比=1:2,所以面积之比=(1:2) =1:4.
    故选D.
    此题考查相似多边形的性质,解题关键在于掌握其性质.
    6、C
    【解析】
    本题考查了一次函数的解析式,设为,把k和b代入即可.
    【详解】
    设函数解析式为:,
    由题意得,k=0.2,b=28,
    ∴函数关系式为:.
    故选:C.
    本题考查了一次函数解析式的表示,熟练掌握一次函数解析式的表示方法是解题的关键.
    7、B
    【解析】
    根据三角形内角和定理求得∠B的度数,再根据平行四边形的性质即可求得答案.
    【详解】
    在△ABC中,∠BAC=78°,∠ACB=38°,
    ∴∠B=(180-78-38)=64°,
    ∵四边形ABCD是平行四边形,
    ∴∠D=∠B=64° .
    故选:B.
    考查了平行四边形的性质,利用平行四边形对角相等得出答案是解题的关键.
    8、D
    【解析】
    利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.
    【详解】
    解:第一个图形阴影部分的面积是a2﹣b2,
    第二个图形的面积是(a+b)(a﹣b),
    则a2﹣b2=(a+b)(a﹣b),
    故选D.
    本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    把x=代入求解即可
    【详解】
    把x=代入中,得,故答案为
    熟练掌握二次根式的化简是解决本题的关键,难度较小
    10、1≤y≤1
    【解析】
    将点(6,0)代入解析式即可求出k的值,得到一次函数的增减性,然后结合自变量的取值范围得到函数值的取值范围即可.
    【详解】
    ∵一次函数的图象与x轴交点的横坐标为,
    ∴这个交点的坐标为(6,0),
    把(6,0)代入中得:


    ∵<0,y随x的增大而减小,
    当时,=1.
    当时,.
    则.
    故答案是:.
    本题考查了利用直线上点坐标确定解析式,熟练掌握直线上任意一点的坐标都满足函数关系式;对于一次函数求极值问题可通过增减性求,也可以代特殊值求出.
    11、
    【解析】
    首先连接EC,由题意可得OE为对角线AC的垂直平分线,可得CE=AE,S△AOE=S△COE=2,继而可得AE•BC=1,则可求得AE的长,即EC的长,然后由勾股定理求得答案.
    【详解】
    解:连接EC.
    ∵四边形ABCD是矩形
    ∴AO=CO,且OE⊥AC,
    ∴OE垂直平分AC
    ∴CE=AE,S△AOE=S△COE=2,
    ∴S△AEC=2S△AOE=1.
    ∴AE•BC=1,
    又∵BC=4,
    ∴AE=2,
    ∴EC=2.
    ∴BE=
    故答案为:
    本题考查了矩形的性质、勾股定理以及三角形的面积问题.此题难度适中,正确做出图形的辅助线是解题的关键.
    12、1cm
    【解析】
    根据题意,将纸板的四个角截去四个相同的小正方形后,得到一个底面积为100的无盖长方体纸盒,设截去的小正方形的边长为,根据底面的面积公式,列一元二次方程求解即可.
    【详解】
    解:设截去的小正方形的边长为,由题意得,,
    整理得,
    解得.
    当时,<0, <0,不符合题意,应舍去;
    当时,>0,>0,符合题意,所以=1.
    故截去的小正方形的边长为1cm.
    故答案为:1cm
    本题考查一元二次方程的应用,根据题意将无盖长方体纸盒的底面面积表示出来,列关于x的一元二次方程求解即可.
    13、1
    【解析】
    由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得BC的值即可.
    【详解】
    ∵△ABC中,D、E分别是AB、AC边上的中点,
    ∴DE是三角形的中位线,
    ∵DE=3cm,
    ∴BC=2DE=1cm.
    故答案为:1.
    本题重点考查了中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
    三、解答题(本大题共5个小题,共48分)
    14、米
    【解析】
    由题意得,在直角三角形中,知道了两直角边,运用勾股定理直接解答即可求出斜边.
    【详解】
    解:∵AC=4米,BC=3米,∠ACB=90°,
    ∴折断的部分长为=5,
    ∴折断前高度为5+3=8(米).
    此题主要考查学生对勾股定理在实际生活中的运用能力.
    15、(1)y与x之间的函数关系式为y=2000﹣20x;(2)购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)该文具店可获得的最大利润是1400元.
    【解析】
    (1)该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,根据利润=单个利润×销售量,分别求出A、B的利润,二者之和便是总利润,即可得到答案,
    (2)把y=1200代入y与x之间的函数关系式即可,
    (3)根据购进计算器的资金不超过4100元,列出关于x的不等式,求出x的取值范围后,根据一次函数的增减性求得最大利润.
    【详解】
    解(1)设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,
    A品牌计算器的单个利润为90﹣70=20元,
    A品牌计算器销售完后利润=20x,
    B品牌计算器的单个利润为140﹣100=40元,
    B品牌计算器销售完后利润=40(50﹣x),
    总利润y=20x+40(50﹣x),
    整理后得:y=2000﹣20x,
    答:y与x之间的函数关系式为y=2000﹣20x;
    (2)把y=1200代入y=2000﹣20x得:2000﹣20x=1200,
    解得:x=40,
    则A种品牌计算器的数量为40台,
    B种品牌计算器的数量为50﹣40=10台,
    答:购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;
    (3)根据题意得:70x+100(50﹣x)≤4100,
    解得:x≥30,
    一次函数y=2000﹣20x随x的增大而减小,
    x为最小值时y取到最大值,
    把x=30代入y=2000﹣20x得:y=2000﹣20×30=1400,
    答:该文具店可获得的最大利润是1400元.
    本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.
    16、(1)①6,0,0,-6;②见详解;(2)证明见详解,当时,四边形DHEF为菱形;(3)四边形ABCD是矩形,当时,四边形ABCD的面积为1.
    【解析】
    (1)①令求出x的值即可得到A的坐标,令求出y的值即可得到B的坐标;
    ②先求出t=2时E,F的坐标,然后找到A,B关于EF的对称点,即可得到折叠后的图形;
    (2)先利用对称的性质得出,然后利用平行线的性质和角度之间的关系得出,由此可证明四边形DHEF为平行四边形,要使四边形DHEF为菱形,只要,利用,然后表示出EF,建立一个关于t的方程进而求解即可;
    (3)AB和CD关于EF对称,根据对称的性质可知四边形ABCD为平行四边形,由(2)知,即可判断四边形ABCD的形状,由,可知,建立关于四边形ABCD面积的方程解出t的值即可.
    【详解】
    (1)①令,则 ,解得 ,
    ∴ ;
    令, 则,
    ∴;
    ②当t=2时, ,图形如下:
    (2)如图,
    ∵四边形DCEF与四边形ABEF关于直线EF对称,,







    即轴,

    ∴四边形DHEF为平行四边形.
    要使四边形DHEF为菱形,只需,



    又,


    解得 ,
    ∴当时,四边形DHEF为菱形;
    (3)连接AD,BC,
    ∵AB和CD关于EF对称,
    ∴ ,
    ∴四边形ABCD为平行四边形.
    由(2)知,



    ∴四边形ABCD为矩形.
    ∵ ,



    ∴四边形ABCD的面积为 ,
    解得,
    ∴当时,四边形ABCD的面积为1.
    本题主要考查一次函数与四边形综合,掌握平行四边形的判定及性质,矩形的判定,勾股定理,菱形的性质并利用方程的思想是解题的关键.
    17、(3)等腰直角三角形;(3);(3)3.
    【解析】
    试题分析:(3)判断三角形CDE和三角形CBF全等是解题的关键;(3)此题过点E作EN∥AB,交BD于点N,证明△EMN≌△FMB,得出EM=FM,于是AM是直角三角形AEF斜边EF中线,只要求出EF长,AM长就求出来了;(3)设EF与GH交于P,连接CE,CF,若∠EPH=45°,前面已证∠EFC=45º,显然GH∥CF,又有AF∥DC,可判断四边形GFCH是平行四边形,CF=GH=,在Rt△CBF中,用勾股定理求出BF长,即t值求出.
    试题解析:(3)∵点E,F的运动速度相同,且同时出发移动t秒,∴DE=BF=t,又∵CD=CB,∠CDE=∠CBF,∴△CDE≌△CBF,∴CE=CF,∠DCE=∠BCF,∠ECF=∠ECB+∠BCF=∠ECB+∠DCE=90º,∴△CEF的形状是等腰直角三角形;(3)先证△EMN≌△FMB,过点E作EN∥AB,交BD于点N,∴∠END=∠ABD=∠EDN=45°, ∴EN="ED=BF=3" ,可证△EMN≌△FMB(AAS),∴EM=FM,Rt△AEF中,AE=4,AF=6+3=8,EF=,∴AM=EF=.(3)连接CE,CF,设EF与GH交于P,由(3)得∠CFE=45°,又∠EPH=45°,∴GH∥CF,又AF∥DC, ∴四边形GFCH是平行四边形 ,∴CF=GH=,在Rt△CBF中,得BF=3,∴t=3.
    考点:3.正方形性质;3.三角形全等及勾股定理的运用;3.平行四边形的判定与性质.
    18、(1)证明见解析;(2)2.
    【解析】
    (1)考察角平分线定理的性质,及直角三角形全等的判断方法,“HL”;(2)利用全等得到线段AM=BE,AM=AF,利用正方形OECF,得到四边都相等,从而利用OE与BE、AF及AB的关系求出OE的长
    【详解】
    解:(1)过点O作OM⊥AB于点M
    ∵正方形OECF
    ∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F
    ∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E
    ∴OM=OE=OF
    ∵OM⊥AB于M, OE⊥BC于E
    ∴∠AMO=90°,∠AFO=90°

    ∴Rt△AMO≌Rt△AFO
    ∴∠MA0=∠FAO
    ∴点O在∠BAC的平分线上
    (2)∵Rt△ABC中,∠C=90°,AC=5,BC=12
    ∴AB=13
    ∴BE=BM,AM=AF
    又BE=BC-CE,AF=AC-CF,而CE=CF=OE
    ∴BE=12-OE,AF=5-OE
    ∴BM+AM=AB
    即BE+AF=13
    12-OE+5-OE=13
    解得OE=2
    本题考查角平分线的判定,全等三角形的判定及性质,掌握HL定理的判定方法及全等三角形的性质是本题的解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】解:先根据菱形的四条边长度相等求出边长,再由菱形的对角线互相垂直平分根据勾股定理即可求出另一条对角线的长。
    20、
    【解析】
    根据根的判别式和已知得出(﹣3)2﹣4c=0,求出方程的解即可.
    【详解】
    ∵一元二次方程x2﹣3x+c=0有两个相等的实数根,
    ∴△=(﹣3)2﹣4c=0,
    解得:c=,故答案为.
    本题考查根的判别式和解一元一次方程,能熟记根的判别式的内容是解此题的关键.
    21、=
    【解析】
    先对进行分母有理化,然后与a比较即可.
    【详解】
    解:,即a=b,所以答案为=.
    本题考查含二次根式的式子大小比较,关键是对进行分母有理化.
    22、165.125千米.
    【解析】
    根据加权平均数的定义列式进行求解即可.
    【详解】
    估计被抽检电动汽车一次充电后平均里程数为:
    165.125(千米),
    故答案为165.125千米.
    本题考查了条形统计图的知识以及加权平均数,能准确分析条形统计图并掌握加权平均数的计算公式是解此题的关键.
    23、
    【解析】
    解不等式组可得 ,因不等式组无解,所以a≥1.
    二、解答题(本大题共3个小题,共30分)
    24、此车没有超速
    【解析】
    在Rt△AMN中根据勾股定理求出AN,在Rt△BMN中根据勾股定理求出BN,由AN+NB求出AB的长,根据路程除以时间得到速度,即可做出判断.
    【详解】
    解:在中,,,
    米,
    在中,,,
    米,
    米,
    汽车从A到B的平均速度为米秒,
    米秒千米时千米时,
    此车没有超速.
    本题考核知识点:勾股定理的应用. 解题关键点:把问题转化为在直角三角形中的问题.
    25、 (1)45°;(2)GF=AG+CF,证明见解析;(3)①1; ②,理由见解析.
    【解析】
    (1)如图1中,连接BE.利用全等三角形的性质证明EB=ED,再利用等角对等边证明EB=EF即可解决问题.
    (2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,证明△GDH≌△GDF(SAS)即可解决问题.
    (3)①设CF=x,则AH=x,BF=1-x,GF=3+x,利用勾股定理构建方程求出x即可.
    ②设正方形边长为x,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.
    【详解】
    解:(1)如图1中,连接BE.
    ∵四边形ABCD是正方形,
    ∴CD=CB,∠ECD=∠ECB=45°,
    ∵EC=EC,
    ∴△ECB≌△ECD(SAS),
    ∴EB=ED,∠EBC=∠EDC,
    ∵∠DEF=∠DCF=90°,
    ∴∠EFC+∠EDC=180°,
    ∵∠EFB+∠EFC=180°,
    ∴∠EFB=∠EDC,
    ∴∠EBF=∠EFB,
    ∴EB=EF,
    ∴DE=EF,
    ∵∠DEF=90°,
    ∴∠EDF=45°
    故答案为45°.
    (2)猜想:GF=AG+CF.
    如图2中,将△CDF绕点D旋转90°,得△ADH,
    ∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,
    ∵∠DAC=90°,
    ∴∠DAC+∠DAH=180°,
    ∴H、A、G三点共线,
    ∴GH=AG+AH=AG+CF,
    ∵∠EDF=45°,
    ∴∠CDF+∠ADG=45°,
    ∴∠ADH+∠ADG=45°
    ∴∠GDH=∠EDF=45°
    又∵DG=DG
    ∴△GDH≌△GDF(SAS)
    ∴GH=GF,
    ∴GF=AG+CF.
    (3)①设CF=x,则AH=x,BF=1-x,GF=3+x,
    则有(3+x)2=(1-x)2+32,
    解得x=2
    ∴S△BFG=•BF•BG=1.
    ②设正方形边长为x,
    ∵AG=a,CF=b,
    ∴BF=x-b,BG=x-a,GF=a+b,
    则有(x-a)2+(x-b)2=(a+b)2,
    化简得到:x2-ax-bx=ab,
    ∴S=(x-a)(x-b)=(x2-ax-bx+ab)=×2ab=ab.
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
    26、(Ⅰ)40,1;(Ⅱ)平均数是1.2,众数为1.2,中位数为1.2;(Ⅲ)每天在校体育活动时间大于1h的学生人数约为3.
    【解析】
    (Ⅰ)求得直方图中各组人数的和即可求得学生人数,利用百分比的意义求得m;
    (Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;
    (Ⅲ)利用总人数乘以对应的百分比即可求解.
    【详解】
    解:(Ⅰ)本次接受调查的初中学生人数为:4+8+12+10+3=40(人),
    m=100×=1.
    故答案是:40,1;
    (Ⅱ)观察条形统计图,
    ∵,
    ∴这组数据的平均数是1.2.
    ∵在这组数据中,1.2出现了12次,出现的次数最多,
    ∴这组数据的众数为1.2.
    ∵将这组数据按从小到大的顺序棑列,其中处于中间的两个数都是1.2,有,
    ∴这组数据的中位数为1.2.
    (Ⅲ)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1h的学生人数占90%,
    ∴估计该校800名初中学生中,每天在校体育活动时间大于1h的人数约占90%.有.
    ∴该校800名初中学生中,每天在校体育活动时间大于1h的学生人数约为3.
    本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    题号





    总分
    得分
    批阅人
    A品牌计算器
    B品牌计算器
    进价(元/台)
    70
    100
    售价(元/台)
    90
    140

    相关试卷

    2025届河南省郑州市金水区为民中学数学九年级第一学期开学质量检测试题【含答案】:

    这是一份2025届河南省郑州市金水区为民中学数学九年级第一学期开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年河南省郑州市金水区金水区为民中学数学九上开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年河南省郑州市金水区金水区为民中学数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省郑州市金水区为民中学2023-2024学年九年级数学第一学期期末联考试题含答案:

    这是一份河南省郑州市金水区为民中学2023-2024学年九年级数学第一学期期末联考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知抛物线,则下列说法正确的是,已知方程的两根为,则的值是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map