河南省郑州市郑东新区实验学校2025届九上数学开学教学质量检测模拟试题【含答案】
展开这是一份河南省郑州市郑东新区实验学校2025届九上数学开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一次函数和反比例函数的图象交于,,两点,若,则的取值范围是( )
A.B.或
C.D.或
2、(4分)观察图中的函数图象,则关于的不等式的解集为( )
A.B.C.D.
3、(4分)图1长方形纸带,,将纸带沿折叠成图2再沿折叠成图3,图3中的的度数是 .
A.98°B.102°C.124°D.156°
4、(4分)用配方法解一元二次方程,此方程可化为的正确形式是( )
A.B.C.D.
5、(4分)下列各组图形中不是位似图形的是()
A.B.
C.D.
6、(4分)计算×的结果是( )
A.B.4
C.D.2
7、(4分)按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( )
①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
A.1B.2C.3D.4
8、(4分)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( ).
A.22B.18C.14D.11
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=_____.
10、(4分)若分式的值为0,则的值为________.
11、(4分)当x=_________时,分式的值为1.
12、(4分)方程x3+8=0的根是_____.
13、(4分)计算=________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)传统节日“春节”到来之际,某商店老板以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.
(1)请写出每月销售该商品的利润y(元)与单价x(元)间的函数关系式;
(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?
15、(8分)如图,是的中线,,交于点,是的中点,连接.
(1)求证:四边形是平行四边形;
(2)若四边形的面积为,请直接写出图中所有面积是的三角形.
16、(8分)判断代数式的值能否等于-1?并说明理由.
17、(10分)解方程(本题满分8分)
(1)(x-5)2 =2(5-x)
(2)2x2-4x-6=0(用配方法);
18、(10分)如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲,乙,丙,丁四人参加射击测试,每人次射击的平均环数都为环,各自的方差见如下表格:
则四个人中成绩最稳定的是______.
20、(4分)某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为__________.
21、(4分)已知一次函数的图象经过两点,,则这个函数的表达式为__________.
22、(4分)如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为______cm.
23、(4分)不等式3x+1<-2的解集是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了满足市场需求,某厂家生产A、B两种款式的环保购物袋,每天共生产5000个,两种购物袋的成本和售价如下表:
设每天生产A种购物袋x个,每天共获利y元.
(1)求y与x的函数解析式;
(2)如果该厂每天最多投入成本12000元,那么每天最多获利多少元?
25、(10分)如图所示,P(a,3)是直线y=x+5上的一点,直线 y=k1x+b与双曲线相交于P、Q(1,m).
(1)求双曲线的解析式及直线PQ的解析式;
(2)根据图象直接写出不等式>k1x+b的解集.
(3)若直线y=x+5与x轴交于A,直线y=k1x+b与x轴交于M求△APQ的面积
26、(12分)计算:(1)2﹣6+3;
(2)(﹣)(+)+(2﹣3)2;
用指定方法解下列一元二次方程:
(3)x2﹣36=0(直接开平方法);
(4)x2﹣4x=2(配方法);
(5)2x2﹣5x+1=0(公式法);
(6)(x+1)2+8(x+1)+16=0(因式分解法)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
在图象上找出一次函数在反比例函数下方时x的范围,即为所求x的范围.
【详解】
解:由一次函数y1=ax+b和反比例函数的图象交于A(-2,m),B(1,n)两点,根据图象可得:当y1<y2时,x的范围为-2<x<0或x>1.
故选:D.
本题考查反比例函数与一次函数的交点问题,利用了数形结合的数学思想,数形结合思想是数学中重要的思想方法,学生做题时注意灵活运用.
2、D
【解析】
根据图象得出两图象的交点坐标是(1,2)和当x<1时,ax<bx+c,推出x<1时,ax<bx+c,即可得到答案.
【详解】
解:由图象可知,两图象的交点坐标是(1,2),
当x>1时,ax>bx+c,
∴关于x的不等式ax-bx>c的解集为x>1.
故选:D.
本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.
3、B
【解析】
由矩形的性质可知AD∥BC,由此可得出∠AFE=∠CEF=26°,再根据翻折的性质可知每翻折一次减少一个∠AFE的度数,由此即可算出∠DFE度数.
【详解】
解:∵四边形ABCD为长方形,
∴AD∥BC,
∴∠AFE=∠CEF=26°.
由翻折的性质可知:
图2中,∠EFD=180°-∠AFE=154°,∠AFD=∠EFD-∠AFE=128°,
图3中,∠DFE=∠AFD-∠AFE=102°,
故选择:B.
本题考查了翻折变换以及矩形的性质,解题的关键是找出∠DFE=180°-3∠AFE.解决该题型题目时,根据翻折变换找出相等的边角关系是关键.
4、D
【解析】
方程常数项移到右边,两边加上9变形即可得到结果.
【详解】
解:方程移项得:x2-6x=-1,
配方得:x2-6x+9=8,即(x-3)2=8,
故选D.
本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.
5、D
【解析】
根据位似图形的定义解答即可,注意排除法在解选择题中的应用.
【详解】
根据位似图形的定义,可得A,B,C是位似图形,B与C的位似中心是交点,A的位似中心是圆心;D不是位似图形.
故选D.
本题考查了位似图形的定义.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.
6、B
【解析】
试题解析:.
故选B.
考点:二次根式的乘除法.
7、C
【解析】
根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出 ②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.
【详解】
解:根据位似性质得出①△ABC与△DEF是位似图形,
②△ABC与△DEF是相似图形,
∵将△ABC的三边缩小的原来的,
∴△ABC与△DEF的周长比为2:1,
故③选项错误,
根据面积比等于相似比的平方,
∴④△ABC与△DEF的面积比为4:1.
故选C.
此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.
8、A
【解析】
试题分析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB=4,然后求出EC=BE+BC=4+4=8,同理可得AF=8,因为AD∥BC,所以四边形AECF是平行四边形,所以四边形AECF的周长=2(AE+EC)=2(3+8)=1.
故选A.
考点:菱形的性质;平行四边形的判定与性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
根据点A在正比例函数y=mx上,进而计算m的值,再根据y的值随x值的增大而减小,来确定m的值.
【详解】
解∵正比例函数y=mx的图象经过点A(m,4),
∴4=m1.
∴m=±1
∵y的值随x值的增大而减小
∴m=﹣1
故答案为﹣1
本题只要考查正比例函数的性质,关键在于根据函数的y的值随x值的增大而减小,来判断m的值.
10、2
【解析】
由分式的值为0时,分母不能为0,分子为0,可得2x-4=0,x+1≠0,解得x=2,
故选C.
11、2
【解析】
直接利用分式的值为零则分子为零,分母不为零,进而得出答案.
【详解】
∵分式的值为1,
∴x2-4=1,x+2≠1,
解得:x=2.
故答案为:2.
此题主要考查了分式的值为零的条件,正确把握相关性质是解题关键.
12、x=﹣1
【解析】
把方程变形为形为x3=−8,利用立方根求解即可
【详解】
解:方程可变形为x3=﹣8,
因为(﹣1)3=﹣8,
所以方程的解为x=﹣1.
故答案为:x=﹣1
此题考查立方根,解题关键在于掌握运算法则
13、
【解析】
直接利用二次根式的乘法运算法则计算得出答案.
【详解】
原式=,
故答案为:.
本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y=-10x2+100x+6000(0≤x≤30);(2) 单价定为5元时,每月销售商品的利润最大,最大利润为6250元.
【解析】
试题分析:(1)单价上涨x(元),由单价每上涨1元,该商品每月的销量就减少10件得到销售量为(300-10x)件,根据利润等于销售价减成本得到每件的利润为(80-60+x),因此每月销售该商品的利润y等于月销售量×每件的利润;
(2)把(1)得到的函数关系式进行配方得到y=-10(x-5)2+6250,然后根据二次函数的最值问题易得到单价定为多少元时,每月销售该商品的利润最大.
试题解析:(1)y=(80-60+x)(300-10x)
=-10x2+100x+6000(0≤x≤30);
(2)y=-10x2+100x+6000
=-10(x-5)2+6250
∵a=-10<0,
∴当x=5时,y有最大值,其最大值为6250,
即:单价定为5元时,每月销售商品的利润最大,最大利润为6250元.
考点:二次函数的应用.
15、(1)见解析;(2),,,
【解析】
(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;
(2)根据面积公式解答即可.
【详解】
证明:∵AD是△ABC的中线,
∴BD=CD,
∵AE∥BC,
∴∠AEF=∠DBF,
在△AFE和△DFB中,
,
∴△AFE≌△DFB(AAS),
∴AE=BD,
∴AE=CD,
∵AE∥BC,
∴四边形ADCE是平行四边形;
(2)∵四边形ABCE的面积为S,
∵BD=DC,
∴四边形ABCE的面积可以分成三部分,即△ABD的面积+△ADC的面积+△AEC的面积=S,
∴面积是S的三角形有△ABD,△ACD,△ACE,△ABE.
此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
16、不能,理由见解析
【解析】
先将原代数式化简,再令化简后的结果等于-1,解出a的值,由结合分式存在的意义可以得出结论.
【详解】
原式= .
当 =−1时,解得:a=0,
∵(a+1)(a−1)a≠0,即a≠±1,a≠0,
∴代数式的值不能等于−1.
此题考查分式的化简求值,解题关键在于掌握运算法则
17、(1)x1=5,x2=3;(2)x1=3,x2=-1.
【解析】
试题分析:(1)先移项,再提取公因式(x-5),把原方程化为二个一元一次方程求解即可.
(2)方程两边同除以2,再把常数项-3移到方程右边,方程两边同时加上一次项系数一半的平方,进行配方,方程两边直接开平方求出方程的解即可.
试题解析:(1)移项得:(x-5)2+2(x-5)=0
∴(x-5)(x-3)=0
即:x-5=0,x-3=0
解得:x1=5,x2=3;
(2)方程变形为:x2-2x-3=0
移项得:x2-2x=3
配方得:x2-2x+1=3+1
(x-1)2=4
x-1=±2
解得:x1=3,x2=-1.
考点:1.解一元二次方程----因式分解法;2.解一元二次方程---配方法.
18、(1)证明见解析;(2)2.
【解析】
分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.
(2)根据菱形的性质和勾股定理求出.根据直角三角形斜边的中线等于斜边的一半即可求解.
详解:(1)证明:∵∥,
∴
∵平分
∴,
∴
∴
又∵
∴
又∵∥,
∴四边形是平行四边形
又∵
∴是菱形
(2)解:∵四边形是菱形,对角线、交于点.
∴.,,
∴.
在中,.
∴.
∵,
∴.
在中,.为中点.
∴.
点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、甲
【解析】
根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.
【详解】
解:,
四个人中成绩最稳定的是甲.
故答案为:甲.
此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
20、59
【解析】
由题意得,,解得a=59.
故答案为59.
21、
【解析】
设一次函数的解析式是:y=kx+b,然后把点,代入得到一个关于k和b的方程组,从而求得k、b的值,进而求得函数解析式.
【详解】
解:设一次函数的解析式是:y=kx+b,
根据题意得:,
解得:,
则一次函数的解析式是:.
故答案是:.
本题考查了待定系数法求函数的解析式,先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.
22、1.
【解析】
试题分析:设这块铁片的宽为xcm,则铁片的长为2xcm,由题意,得3(2x﹣6)(x﹣6)=240,解得x1=1,x2=﹣2(不合题意,舍去),答:这块铁片的宽为1cm.
故答案为1.
考点: 一元二次方程的应用.
23、.
【解析】
试题分析:3x+1<-2,3x<-3,x<-1.故答案为x<-1.
考点:一元一次不等式的解法.
二、解答题(本大题共3个小题,共30分)
24、(1) ;(2)2400元.
【解析】
(1)根据题意可得A种塑料袋每天获利(2.4-2)x,B种塑料袋每天获利(3.6-3)(5000-x),共获利y元,列出y与x的函数关系式:y=(2.4-2)x+(3.6-3)(5000-x).
(2)根据题意得2x+3(4500-x)≤10000,解出x的范围.得出y随x增大而减小.
【详解】
(1)由题意得:=
(2)由题意得:≤12000
解得:≥3000
在函数中,<0
∴随的增大而减小
∴当=3000时,每天可获利最多,最大利润=2400
∴该厂每天最多获利2400元.
此题主要考查了一次函数的应用以及不等式组解法,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
25、(1)双曲线的解析式为,线PQ的解析式为:;
(2)-2<x<0或x>-1;
(3)△APQ的面积为
【解析】
试题分析:(1)利用代入法求出a的值,然后根据交点可求出m的值,从而求出解析式;
(2)根据图像可直接求解出取值范围;
(3)分别求出交点,利用割补法求三角形的面积即可.
试题解析:(1)把代入中得
∴p(-2,3)
把代入中,得k=-6
∴双曲线解析式为
把代入中,得m=-3
∴a(1,-6)
把时,,时,代入
得: ∴
直线pa解析式为:
②-2<x<0 或x>-1
③在与中,y=0 解设x=-1
∴M(-1,0)
∴
=
=
∴△APO面积为
【详解】
请在此输入详解!
26、(1)14;(2)31﹣12;(3)x1=﹣6,x2=6;(4)x1=2﹣,x2=2+;(1)x1=,x2=;(6)x1=x2=﹣1.
【解析】
(1)先把各二次根式化为最简二次根式,然后合并同类二次根式即可;
(2)利用平方差公式和完全平方公式计算;
(3)直接开平方法求解;
(4)配方法求解可得;
(1)公式法求解即可;
(6)因式分解法解之可得.
【详解】
解:(1)2﹣6+3
=4﹣6×+3×4
=2+12
=14;
(2)(﹣)(+)+(2﹣3)2
=6﹣1+12+18﹣12
=31﹣12.
(3)x2=36,
∴x=±6,
即x1=﹣6,x2=6;
(4)x2﹣4x+4=2+4,
即(x﹣2)2=6,
∴x﹣2= ,
∴x1=2﹣ ,x2=2+ ;
(1)∵a=2,b=﹣1,c=1,
∴b2﹣4ac=21﹣8=17>0,
∴x= ,
即x1= ,x2= ;
(6)(x+1)2+8(x+1)+16=0
(x+1+4)2=0,
即(x+1)2=0,
∴x+1=0,
即x1=x2=﹣1.
故答案为:(1)14;(2)31﹣12;(3)x1=﹣6,x2=6;(4)x1=2﹣,x2=2+;(1)x1=,x2=;(6)x1=x2=﹣1.
本题考查二次根式的混合运算,解一元二次方程,根据不同的方程选择合适的方法是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
丙
丁
方差
成本(元/个)
售价 (元/个)
2
2.4
3
3.6
相关试卷
这是一份河南省郑州市郑东新区九制实验学校2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省郑州市实验中学2024年数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年河南省郑州市郑东新区实验学校数学九上期末教学质量检测模拟试题含答案,共7页。