搜索
    上传资料 赚现金
    英语朗读宝

    河南省周口市扶沟县2024年数学九上开学复习检测模拟试题【含答案】

    河南省周口市扶沟县2024年数学九上开学复习检测模拟试题【含答案】第1页
    河南省周口市扶沟县2024年数学九上开学复习检测模拟试题【含答案】第2页
    河南省周口市扶沟县2024年数学九上开学复习检测模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省周口市扶沟县2024年数学九上开学复习检测模拟试题【含答案】

    展开

    这是一份河南省周口市扶沟县2024年数学九上开学复习检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形( )
    A.4个B.5个C.8个D.9个
    2、(4分)用反证法证明:“中,若.则”时,第一步应假设( )
    A.B.C.D.
    3、(4分)在平面直角坐标系中,已知点A(1,2),B(2,1),C(﹣1,﹣3).D(﹣2,3),其中不可能与点E(1,3)在同一函数图象上的一个点是( )
    A.点A B.点B C.点C D.点D
    4、(4分)用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,首先应假设这个直角三角形中( )
    A.两个锐角都大于45°B.两个锐角都小于45
    C.两个锐角都不大于45°D.两个锐角都等于45°
    5、(4分)如图,在▱ABCD中,下列说法一定正确的是( )
    A.AC=BDB.AC⊥BDC.AB=CDD.AB=BC
    6、(4分)某青年排球队12名队员的年龄情况如下表:
    其中x>y,中位数为20,则这个队队员年龄的众数是( )
    A.3B.4C.19D.20
    7、(4分)若分式有意义,则的取值范围是( )
    A.B.C.D.
    8、(4分)的绝对值是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)甲、乙两名同学的5次射击训练成绩(单位:环)如下表.
    比较甲、乙这5次射击成绩的方差S甲1,S乙1,结果为:S甲1_____S乙1.(选填“>”“=”或“<“)
    10、(4分)如图,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于点D,分别过点A作AE∥BC,过点B作BE∥AD,AE与BE相交于点E.若CD=2,则四边形ADBE的面积是_____.
    11、(4分)小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得,接着活动学具成为图2所示正方形,并测得正方形的对角线,则图1中对角线AC的长为_____.
    12、(4分)王玲和李凯进行投球比赛,每人连投12次,投中一次记2分,投空一次记1分,王玲先投,投得16分,李凯要想超过王玲,应至少投中________次.
    13、(4分)计算: _______________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,正方形中,点、、分别是、、的中点,、交于,连接、.下列结论:①;②;③;④.正确的有( )
    A.1个B.2个C.3个D.4个
    15、(8分)计算:(1) (2)
    16、(8分)已知是方程的两个实数根,且.
    (1)求的值;
    (2)求的值.
    17、(10分)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.
    (1)求C点的坐标;
    (2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;
    (3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由
    18、(10分)两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6 cm,AC=10 cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).
    (1)求证:四边形ACFD是平行四边形.
    (2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?
    (3)将Rt△ABC向左平移4 cm,求四边形DHCF的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是____.
    20、(4分)如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为______.
    21、(4分)如图,在矩形ABCD中,AB=1,BC=7,将矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,点E、F分别是BD、B′D′的中点,则EF的长度为________cm.
    22、(4分)如图,在直角坐标系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为 ,点An的坐标为 .
    23、(4分)当m=_____时,x2+2(m﹣3)x+25是完全平方式.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某学校要从甲乙两名射击运动员中挑选一人参加全市比赛,在选拔赛中,每人进行了5次射击,甲的成绩(环)为:9.7,10,9.6,9.8,9.9;乙的成绩的平均数为9.8,方差为0.032;
    (1)甲的射击成绩的平均数和方差分别是多少?
    (2)据估计,如果成绩的平均数达到9.8环就可能夺得金牌,为了夺得金牌,应选谁参加比赛?
    25、(10分)已知四边形中,,垂足为点,.
    (1)如图1,求证:;
    (2)如图2,点为上一点,连接,,求证:;
    (3)在(2)的条件下,如图3,点为上一点,连接,点为的中点,分别连接,,+==,,求线段的长.
    26、(12分)已知直线经过点.
    (1)求的值;
    (2)求此直线与轴、轴围成的三角形面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,CD∥AB,
    又∵EF∥BC,GH∥AB,
    ∴∴AB∥GH∥CD,AD∥EF∥BC,
    ∴平行四边形有:□ ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.
    故选D.
    本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.
    2、B
    【解析】
    熟记反证法的步骤,直接选择即可
    【详解】
    解:用反证法证明命题“在△ABC中,AB≠AC,求证:∠B≠∠C”的过程中,第一步应是假设∠B=∠C.
    故选:B
    本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.
    反证法的步骤是:
    (1)假设结论不成立;
    (2)从假设出发推出矛盾;
    (3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
    3、A
    【解析】
    根据“对于x的每一个确定的值,y都有唯一的值与其对应”,可知点A不可能与E在同一函数图象上.
    【详解】
    根据函数的定义可知:点A(1,2)不可能与点E(1,3)在同一函数图象上.
    故选A.
    本题考查了函数的概念,明确函数的定义是关键,尤其要正确理解:对于x的每一个确定的值,y都有唯一的值与其对应.
    4、A
    【解析】
    用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.
    【详解】
    用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,
    应先假设两个锐角都大于45°.
    故选:A.
    本题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
    5、C
    【解析】
    试题分析:平行四边形的两组对边分别平行且相等,对角线互相平分.
    考点:平行四边形的性质.
    6、C
    【解析】
    先求出x+y=7,再根据x>y,由众数的定义即可求出这个队员年龄的众数.
    【详解】
    解:依题意有x+y=12−1−2−2=7,
    ∴y=7-x
    ∵x>y,
    ∴x>7-x

    ∵x为整数
    ∴x≥4,
    ∴这个队队员年龄的众数是1.
    故选C.
    本题主要考查了中位数,众数,掌握中位数,众数是解题的关键.
    7、A
    【解析】
    根据分式有意义的条件:分母不等于0,即可求解.
    【详解】
    解:根据题意得:x-1≠0,
    解得:x≠1.
    故选:A.
    此题考查分式有意义的条件,正确理解条件是解题的关键.
    8、D
    【解析】
    直接利用绝对值的定义分析得出答案.
    【详解】
    解:-1的绝对值是:1.
    故选:D.
    此题主要考查了绝对值,正确把握绝对值的定义是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、<
    【解析】
    首先求出各组数据的平均数,再利用方差公式计算得出答案.
    【详解】




    则﹤.
    故答案为:﹤.
    此题主要考查了方差,正确掌握方差计算公式是解题关键.
    10、
    【解析】
    过D作DF⊥AB于F,根据角平分线的性质得出DF=CD=2.由△ABC是等腰直角三角形得出∠ABC=45°,再证明△BDF是等腰直角三角形,求出BD=DF=2,BC=2+2=AC.易证四边形ADBE是平行四边形,得出AE=BD=2,然后根据平行四边形ADBE的面积=BDAC,代入数值计算即可求解.
    【详解】
    解:如图,过D作DF⊥AB于F,
    ∵AD平分∠BAC,∠C=90°,
    ∴DF=CD=2.
    ∵Rt△ABC中,∠C=90°,AC=BC,
    ∴∠ABC=45°,
    ∴△BDF是等腰直角三角形,
    ∵BF=DF=2,BD=DF=2,
    ∴BC=CD+BD=2+2,AC=BC=2+2.
    ∵AE//BC,BE⊥AD,
    ∴四边形ADBE是平行四边形,
    ∴AE=BD=2,
    ∴平行四边形ADBE的面积= .
    故答案为.
    本题考查了平行四边形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质,平行四边形的面积.求出BD的长是解题的关键.
    11、
    【解析】
    如图1,2中,连接.在图2中,利用勾股定理求出,在图1中,只要证明是等边三角形即可解决问题.
    【详解】
    解:如图1,2中,连接.
    在图2中,四边形是正方形,
    ,,
    ∵,
    cm,
    在图1中,四边形ABCD是菱形,,

    是等边三角形,
    cm,
    故答案为:.
    本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    12、1
    【解析】
    根据题意,可以列出相应的不等式,本题得以解决,注意问题中是李凯超过王玲.
    【详解】
    解:设李凯投中x个球,总分大于16分,则
    2x+(12-x)×1>16,
    解得,x>4,
    ∴李凯要想超过王玲,应至少投中1次,
    故答案为:1.
    本题考查一元一次不等式的应用,解答本题的关键是明确题意,列出相应的不等式,利用不等式的性质解答.
    13、1
    【解析】根据二次根式乘方的意义与二次根式乘法的运算法则,即可求得答案.
    解:(-)1=(-)(-)=1.
    故答案为:1.
    三、解答题(本大题共5个小题,共48分)
    14、C
    【解析】
    连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,AG≠DG,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=AD,根据等腰三角形的性质,即可得∠CHG=∠DAG.则问题得解.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=BC=CD=AD,∠B=∠BCD=90°,
    ∵点E、F、H分别是AB、BC、CD的中点,
    ∴BE=CF,
    在△BCE与△CDF中,

    ∴△BCE≌△CDF,(SAS),
    ∴∠ECB=∠CDF,
    ∵∠BCE+∠ECD=90°,
    ∴∠ECD+∠CDF=90°,
    ∴∠CGD=90°,
    ∴CE⊥DF;故①正确;
    在Rt△CGD中,H是CD边的中点,
    ∴HG=CD=AD,
    即2HG=AD;故④正确;
    连接AH,如图所示:
    同理可得:AH⊥DF,
    ∵HG=HD=CD,
    ∴DK=GK,
    ∴AH垂直平分DG,
    ∴AG=AD;
    若AG=DG,则△ADG是等边三角形,
    则∠ADG=60°,∠CDF=30°,
    而CF=CD≠DF,
    ∴∠CDF≠30°,
    ∴∠ADG≠60°,
    ∴AG≠DG,故②错误;
    ∴∠DAG=2∠DAH,
    同理:△ADH≌△DCF,
    ∴∠DAH=∠CDF,
    ∵GH=DH,
    ∴∠HDG=∠HGD,
    ∴∠GHC=∠HDG+∠HGD=2∠CDF,
    ∴∠CHG=∠DAG;故③正确;
    正确的结论有3个,
    故选C.
    此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.
    15、(1)14;(2)
    【解析】
    (1)先根据二次根式的性质把各个根式化成最简二次根式,再合并同类二次根式即可.
    (2)根据多项式乘以多项式的运算法则计算即可.
    【详解】
    解:(1)原式=
    =
    =14
    (2)原式=
    =
    本题考查了二次根式的性质和多项式与多项式相乘,解题的关键是准确的化简二次根式,以及掌握乘法运算法则.
    16、(1);(2)
    【解析】
    (1)利用根与系数的关系得到x1+x2=2,x1x2=q,则通过解方程组,可得,然后计算q的值;
    (2)先利用一元二次方程根的定义得到x12=2x1+2,则x13=6x1+4,所以x13-3x12-2x2+3化为-2x2+1,然后把x2=1+代入计算即可.
    【详解】
    解:(1)根据题意得x1+x2=2,x1x2=q,
    由,可得.
    所以, .
    (2)∵x1是方程x2-2x-2=0的实数根,,∴,即,
    .
    本题考查根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,.
    17、(1)(﹣6,﹣2);(2)见解析;(3)见解析.
    【解析】
    (1)证明△MAC≌△OBA(AAS),根据三角形全等时对应边相等可得C的坐标;
    (2)根据平移规律可得三个H点的坐标;
    (3)如图3,作点M(1,-1)关于y轴的对点M'(-1,-1),连接CF1、MF1,由于|FM-FC|≤CM,当C、M'、F三点共线时取等号,连接CM',与y轴交于点F即为所求,根据直线解析式,令x=0可得与y轴的交点F的坐标.
    【详解】
    解:(1)如图1,过C作CM⊥x轴于M点,
    ∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,
    则∠MAC=∠OBA,
    在△MAC和△OBA中,

    ∴△MAC≌△OBA(AAS),
    ∴CM=OA=2,MA=OB=4,
    ∴OM=OA+AM=2+4=6,
    ∴点C的坐标为(﹣6,﹣2)
    (2)答:如图2,存在三个H点,
    ∵A(﹣2,0),B(0,﹣4),C(﹣6,﹣2),
    ∴根据B到A的平移规律可得C到H1的平移规律,则H1(﹣8,2),
    同理得H2(﹣4,﹣6)、H3(4,﹣2)
    (3)答:存在,F(0,﹣),
    如图3,作点M(1,﹣1)关于y轴的对点M'(﹣1,﹣1),
    设y轴上存在一点F1,连接CF1、M'F1,由于|FM﹣FC|≤CM',
    当C、M'、F三点共线时取等号,
    连接CM',与y轴交于点F即为所求,
    设CM'的解析式为:y=kx+b,
    把C(﹣6,﹣2)、M'(﹣1,﹣1)代入得,,
    解得:,
    ∴,
    当x=0时,y=﹣,
    ∴F(0,﹣).
    本题考查四边形综合题、轴对称的最短路径问题、等腰直角三角形的性质和判定、三角形全等的性质和判定等知识,第3问有难度,确定点F的位置是关键,学会用平移的规律确定点的坐标,属于中考压轴题.
    18、(1)见解析;(2)将Rt△ABC向左(或右)平移2 cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)18(cm2)
    【解析】
    (1)四边形ACFD为Rt△ABC平移形成的,即可求得四边形ACFD是平行四边形;(2)先根据勾股定理得BC==8(cm),△ABC的面积=24 cm2,要满足四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2 cm,从而求解;(3)将Rt△ABC向右平移4cm,则EH为Rt△ABC的中位线,即可求得△ADH和△CEH的面积,即可解题.
    【详解】
    (1)证明:∵四边形ACFD是由Rt△ABC平移形成的,
    ∴AD∥CF,AC∥DF.
    ∴四边形ACFD为平行四边形.
    (2)解:由题易得BC==8(cm),△ABC的面积=24 cm2.
    要使得四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2 cm,
    ∴将Rt△ABC向左(或右)平移2 cm,可使四边形ACFD的面积等于△ABC的面积的一半.
    (3)解:将Rt△ABC向左平移4 cm,
    则BE=AD=4 cm.
    又∵BC=8 cm,∴CE=4 cm=AD.
    由(1)知四边形ACFD是平行四边形,
    ∴AD∥BF.
    ∴∠HAD=∠HCE.
    又∵∠DHA=∠EHC,
    ∴△DHA≌△EHC(AAS).
    ∴DH=HE=DE=AB=3 cm.
    ∴S△HEC=HE·EC=6 cm2.
    ∵△ABC≌△DEF,
    ∴S△ABC=SDEF.
    由(2)知S△ABC=24 cm2,
    ∴S△DEF=24 cm2.
    ∴四边形DHCF的面积为S△DEF-S△HEC=24-6=18(cm2).
    本题考查平行四边形的判定、三角形面积和平行四边形面积的计算,还考查了全等三角形的判定、中位线定理,考查了勾股定理在直角三角形中的运用,本题中求△CEH的面积是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、10
    【解析】
    试题分析:由题意可知这组数据的众数为10,再根据平均数公式即可求得x的值,最后根据中位数的求解方法求解即可.
    解:由题意得这组数据的众数为10
    ∵数据10,10,x,8的众数与它的平均数相等
    ∴,解得
    ∴这组数据为12,10,10,8
    ∴这组数的中位数是10.
    考点:统计的应用
    点评:统计的应用是初中数学的重点,是中考必考题,熟练掌握各种统计量的计算方法是解题的关键.
    20、
    【解析】
    ∵四边形ABCD为矩形,
    ∴AB=DC=6,BC=AD=8,AD∥BC,∠B=90°.
    ∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,
    ∴∠DAC=∠D′AC.
    ∵AD∥BC,
    ∴∠DAC=∠ACB.
    ∴∠D′AC=∠ACB.
    ∴AE=EC.
    设BE=x,则EC=8-x,AE=8-x.
    ∵在Rt△ABE中,AB2+BE2=AE2,
    ∴62+x2=(8-x)2,解得x=,即BE的长为.
    故答案是:.
    21、5
    【解析】
    【分析】如图,连接AC、A′C,AA′,由矩形的性质和勾股定理求出AC长,由矩形的性质得出E是AC的中点,F是A′C的中点,证出EF是△ACA′的中位线,由三角形中位线定理得出EF=AA′,由等腰直角三角形的性质得出AA′=AC,即可得出结果.
    【详解】如图,连接AC、A′C,AA′,
    ∵矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,
    ∴∠ACA′=90°,∠ABC=90°,
    ∴AC=,AC=BD=A′C=B′D′,
    AC与BD互相平分,A′C与B′D′互相平分,
    ∵点E、F分别是BD、B′D′的中点,
    ∴E是AC的中点,F是A′C的中点,
    ∵∠ACA′=90°,∴△ACA′是等腰直角三角形,
    ∴AA′=AC==10,
    ∴EF=AA′=5,
    故答案为5.
    【点睛】本题考查了矩形的性质、旋转的性质、勾股定理、等腰直角三角形的判定与性质,三角形的中位线定理,熟练掌握矩形的性质,由三角形的中位线定理求出EF长是解决问题的关键.
    22、A4(7,8);An(2n-1-1,2n-1).
    【解析】
    ∵点B1的坐标为(1,1),点B2的坐标为(3,2)
    ∴由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),
    ∴直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.
    ∵A1的纵坐标是:1=20,A1的横坐标是:0=20-1;
    A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;
    A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,
    A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).
    ∴An的纵坐标是:2n-1,横坐标是:2n-1-1,
    即点An的坐标为(2n-1-1,2n-1).
    故答案为(7,8);(2n-1-1,2n-1).
    23、8或﹣1
    【解析】
    先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.
    【详解】
    解:∵x1+1(m﹣3)x+15=x1+1(m﹣3)x+51,
    ∴1(m﹣3)x=±1×5x,
    m﹣3=5或m﹣3=﹣5,
    解得m=8或m=﹣1.
    故答案为:8或﹣1.
    本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.
    二、解答题(本大题共3个小题,共30分)
    24、(1)9.8,0.02;(2)应选甲参加比赛.
    【解析】
    (1)根据平均数和方差的定义列式计算可得;
    (2)根据方差的意义解答即可.
    【详解】
    (1)=×(9.7+10+9.6+9.8+9.9)=9.8(环),
    =×[(9.7﹣9.8)2+(10﹣9.8)2+(9.6﹣9.8)2+(9.8﹣9.8)2+(9.9﹣9.8)2]=0.02(环2);
    (2)∵甲、乙的平均成绩均为9.8环,而=0.02<=0.32,
    所以甲的成绩更加稳定一些,
    则为了夺得金牌,应选甲参加比赛.
    本题考查方差的定义与意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    25、(1)见解析;(2)见解析;(3)
    【解析】
    (1)如图1中,作DF⊥BC延长线于点F,垂足为F.证明△ABH≌△DCF(HL),即可解决问题.
    (2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β则∠CED=2∠ADE+2∠BAH=2α+2β.证明∠ECD=∠EDC即可.
    (3)延长CM交DA延长线于点N,连接EN,首先证明△ECD为等边三角形,延长PD到K使DK=EQ,证明△EQC≌△DKC(SAS),推出∠DCK=∠ECQ,QC=KC,推出∠PCK=∠DCK+∠PCD=30°=∠PCQ,连接PQ.证明△PQC≌△PKC(SAS)推出PQ=PK,可得PK=PD+DK=PD+EQ=5+2=7,作PT⊥QD于T,∠PDT=60°,∠TPD=30°,作CR⊥ED于R,勾股定理解直角三角形求出RC,RQ即可解决问题.
    【详解】
    (1)证明:如图1中,作DF⊥BC延长线于点F,垂足为F.
    ∵AH⊥BC,
    ∴∠AHB=∠DFC=90°,
    ∵AD∥BC,
    ∴∠ADF+∠AFD=180°,
    ∴∠ADF=180°−90°=90°,
    ∴四边形AHFD为矩形,
    ∴AH=DF,
    ∵AH=DF,AB=CD,
    ∴△ABH≌△DCF(HL)
    ∴∠B=∠DCF,
    ∴AB∥CD.
    (2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β,
    则∠CED=2∠ADE+2∠BAH=2α+2β.
    ∵AB∥CD,AB=CD,
    ∴四边形ABCD为平行四边形,
    ∴∠B=∠ADC=90°−α,
    ∴∠EDC=∠ADC−∠ADE=90°−α−β,
    在△EDC中,∠ECD=180°−∠CED−∠EDC=180°−(90°−α−β)−(2α+2β)=90°−α−β
    ∴∠EDC=∠ECD,
    ∴EC=ED.
    (3)延长CM交DA延长线于点N,连接EN,
    ∵AD∥BC,
    ∴∠ANM=∠BCM,
    ∵∠AMN=∠BMC、AM=MB,
    ∴△AMN≌△BMC(AAS)
    ∴AN=BC,
    ∵四边形ABCD为平行四边形,
    ∴AD=BC,
    ∴AD=AN,
    ∵AD∥BC,
    ∴∠DAH=∠HAD=90°,
    ∴EN=ED,
    ∵ED=EC,
    ∴EC=DE=EN,
    ∴∠ADE=∠ANE,∠ECM=∠ENM,
    ∵∠ADE+∠ECM=30°,
    ∴∠DEC=∠ADE+∠DNE+∠NCE,
    =∠ADE+∠ANE+∠ENC+∠DCN
    =2(∠ADE+∠ECM)=2×30°=60°.
    ∵EC=ED,
    ∴△ECD为等边三角形,
    ∴EC=CD,∠DCE=60°,延长PD到K使DK=EQ,
    ∵PD∥EC,
    ∴∠PDE=∠DEC=60°,∠KDC=∠ECD=60°,
    ∴∠KDC=∠DEC,EC=CD,DK=EQ,
    ∴△EQC≌△DKC(SAS),
    ∴∠DCK=∠ECQ,QC=KC,
    ∵∠ECQ+∠PCD=∠ECD−∠PCQ=60°−30°=30°,
    ∴∠PCK=∠DCK+∠PCD=30°=∠PCQ,
    连接PQ.
    ∵PC=PC,∠PCK=∠PCQ, QC=KC,
    ∴△PQC≌△PKC(SAS)
    ∴PQ=PK,
    ∵PK=PD+DK=PD+EQ=5+2=7,
    作PT⊥QD于T,∠PDT=60°,∠TPD=30°,
    ∴TD=PD=,PT==,
    在Rt△PQT中,QT=,
    ∴QD=,
    ∴ED=8+2=10,
    ∴EC=ED=10,作CR⊥ED于R,∠DEC=60°∠ECR=30°,
    ∴ER=EC=5,RC=,RQ=5−2=3
    在Rt△QRC中,CQ=.
    本题属于四边形综合题考查了平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考压轴题.
    26、 (1) ;(2)2.
    【解析】
    (1)把带入求解即可;(2)先求出一次函数y=-x+2与x轴和y轴的交点,再利用三角形的面积公式求解即可.
    【详解】
    (1)将点代入


    (2)
    由(1)得直线解析式为
    令,得到与轴交点为
    令,得到与轴交点为
    ∴直线与两坐标轴围成的三角形面积为.
    本题考查了待定系数法求一次函数解析式及三角形的面积,难度不大,属于基础题,注意细心运算即可.
    题号





    总分
    得分
    年龄
    18
    19
    20
    21
    22
    人数
    1
    x
    y
    2
    2

    7
    8
    9
    8
    8

    6
    10
    9
    7
    8

    相关试卷

    河南省周口市名校2024年数学九上开学质量检测试题【含答案】:

    这是一份河南省周口市名校2024年数学九上开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省周口市川汇区2025届数学九上开学考试模拟试题【含答案】:

    这是一份河南省周口市川汇区2025届数学九上开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省扶沟县2025届九上数学开学经典模拟试题【含答案】:

    这是一份河南省扶沟县2025届九上数学开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map