![黑龙江省大庆市第六十九中学2024年数学九上开学达标检测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16276859/0-1729559860852/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![黑龙江省大庆市第六十九中学2024年数学九上开学达标检测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16276859/0-1729559860938/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![黑龙江省大庆市第六十九中学2024年数学九上开学达标检测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16276859/0-1729559860961/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
黑龙江省大庆市第六十九中学2024年数学九上开学达标检测模拟试题【含答案】
展开
这是一份黑龙江省大庆市第六十九中学2024年数学九上开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若样本数据3,4,2,6,x的平均数为5,则这个样本的方差是( )
A.3B.5C.8D.2
2、(4分)实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )
A.4,5B.5,4C.4,4D.5,5
3、(4分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为( )
A.x<﹣1B.x>﹣1C.x>2D.x<2
4、(4分)下列说法:(1)8的立方根是.(2) 的平方根是.(3)负数没有立方根. (4)正数有两个平方根,它们互为相反数.其中错误的有( )
A.4个B.3个C.2个D.1个
5、(4分)若n为任意整数,(n+11)2-n2的值总可以被k整除,则k等于( )
A.11 B.22 C.11或22 D.11的倍数
6、(4分)若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是( )
A.-2 B.2 C.-50 D.50
7、(4分)下列二次概式中,最简二次根式是( )
A.B.C.D.
8、(4分)如图,每个小正方形边长均为1,则下列图中的阴影三角形与左图中相似的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程的解是_______.
10、(4分)如图,跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.8m;当它的一端B地时,另一端A离地面的高度AC为____m.
11、(4分)高6cm的旗杆在水平面上的影长为8cm,此时测得一建筑物的影长为28cm,则该建筑物的高为______.
12、(4分)关于的一元二次方程有实数根,则的取值范围是_____________.
13、(4分)截止今年4月2日,华为官方应用市场“学习强国”APP下载量约为88300000次.将数88300000科学记数法表示为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:(1﹣),其中m=1.
15、(8分)(1)已知x=+1,y=-1,求x2+y2的值.
(2)解一元二次方程:3x2+2x﹣2=1.
16、(8分)如图,直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,点E为线段AB中点,∠ABO的平分线BD与y轴相较于点D,点A、C关于点O对称.
(1)求线段DE的长;
(2)一个动点P从点D出发,沿适当的路径运动到直线BC上的点F,再沿射线CB方向移动2个单位到点G,最后从点G沿适当的路径运动到点E处,当P的运动路径最短时,求此时点G的坐标;
(3)将△ADE绕点A顺时针方向旋转,旋转角度α(0<α≤180°),在旋转过程中DE所在的直线分别与直线BC、直线AC相交于点M、点N,是否存在某一时刻使△CMN为等腰三角形,若存在,请求出CM的长,若不存在,请说明理由.
17、(10分)已知:如图,,是□ABCD的对角线上的两点,,求证:.
18、(10分)为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:
如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是
20、(4分)如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为_____.
21、(4分)如图,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于点D,分别过点A作AE∥BC,过点B作BE∥AD,AE与BE相交于点E.若CD=2,则四边形ADBE的面积是_____.
22、(4分)已知一次函数y=x+b的图象经过第一、二、三象限,写出一个符合条件的b的值为_____.
23、(4分)(1)____________;(2)=____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)一次安全知识测验中,学生得分均为整数,满分10分,这次测验中,甲,乙两组学生人数都为5人,成绩如下(单位:分):
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
(2)已知甲组学生成绩的方差,计算乙组学生成绩的方差,并说明哪组学生的成绩更稳定.
25、(10分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线的顶点.
(1)当时,求该抛物线下方(包括边界)的好点个数.
(2)当时,求该抛物线上的好点坐标.
(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.
26、(12分)阅读材料:小华像这样解分式方程
解:移项,得:
通分,得:
整理,得:分子值取0,得:x+5=0
即:x=﹣5
经检验:x=﹣5是原分式方程的解.
(1)小华这种解分式方程的新方法,主要依据是 ;
(2)试用小华的方法解分式方程
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先由平均数是5计算出x的值,再计算方差.
【详解】
解:∵数据3,4,2,6,x的平均数为5,
∴ ,
解得:x=10,
则方差为×[(3﹣5)2+(4﹣5)2+(2﹣5)2+(6﹣5)2+(10﹣5)2]=8,
故选:C.
本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.
2、A
【解析】
根据众数及中位数的定义,结合所给数据即可作出判断.
【详解】
解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4
故选:A.
本题考查(1)、众数;(2)、中位数.
3、B
【解析】
分析:由图象可以知道,当x=﹣1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.
详解:两条直线的交点坐标为(﹣1,2),且当x>﹣1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣1.
故选B.
点睛:本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
4、B
【解析】
(1)(3)根据立方根的定义即可判定;
(2)根据算术平方根和平方根的定义即可判定;
(4)根据平方根的定义即可判定.
【详解】
(1)8的立方根是2,原来的说法错误;
(2)=16,16的平方根是±4,原来的说法错误;
(3)负数有立方根,原来的说法错误;
(4)正数有两个平方根,它们互为相反数是正确的.
错误的有3个.
故选B.
此题考查了相反数,立方根和算术平方根、平方根的性质,要掌握一些特殊数字的特殊性质,如1,-1和1.
相反数的定义:只有符号相反的两个数叫互为相反数;
立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,1的立方根是1.
算术平方根是非负数.
5、D
【解析】
试题分析:根据平方差公式分解因式即可判断。
∵(n+11)2-n2=(n+11+n)(n+11-n)=11(2n+11),
∴(n+11)2-n2的值总可以被11的倍数整除,
故选D.
考点:本题考查的是因式分解的简单应用
点评:解答本题的关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b).
6、A
【解析】
试题分析:先提取公因式ab,整理后再把a+b的值代入计算即可.
当a+b=5时,a1b+ab1=ab(a+b)=5ab=-10,解得:ab=-1.
考点:因式分解的应用.
7、C
【解析】
根据最简二次根式的定义即可求解.
【详解】
A. =2,故错误;
B. =根号里含有小数,故错误;
C. 为最简二次根式,正确;
D. =2,故错误;
故选C.
此题主要考查最简二次根式定义,解题的关键是熟知最简二次根式的特点.
8、B
【解析】
根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.
【详解】
解:由勾股定理得:AB=,BC=2,AC=,
∴AB:BC:AC=1::,
A、三边之比为1::,图中的三角形(阴影部分)与△ABC不相似;
B、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;
C、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;
D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.
故选:B.
此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】
解:两边同时乘以得,
,
解得,,
检验:当时,,不是原分式方程的解;
当时,,是原分式方程的解.
故答案为:.
本题考查了解分式方程:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
10、1.6
【解析】
确定出OD是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.
【详解】
解:∵跷跷板AB的支柱OD经过它的中点O,AC、OD都与地面垂直,
∴OD是△ABC的中位线,
∴AC=2OD=2×0.8=1.6米.
故答案为1.6米.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,是基础题,熟记定理是解题的关键.
11、21
【解析】
【分析】设建筑物高为hm,依题意得.
【详解】设建筑物高为hm,依题意得
解得,h=21
故答案为21
【点睛】本题考核知识点:成比例性质.解题关键点:理解同一时刻,物高和影长成比例.
12、且
【解析】
根据∆≥0,且k≠0列式求解即可.
【详解】
由题意得
∆=16+8k≥0且k≠0,
解之得
且.
故答案为:且.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆
相关试卷
这是一份黑龙江省大庆市第六十一中学2024-2025学年数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届黑龙江省大庆市第六十九中学数学九上开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省日照于里中学九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)