搜索
    上传资料 赚现金
    英语朗读宝

    黑龙江省大庆市肇源2025届九上数学开学教学质量检测模拟试题【含答案】

    黑龙江省大庆市肇源2025届九上数学开学教学质量检测模拟试题【含答案】第1页
    黑龙江省大庆市肇源2025届九上数学开学教学质量检测模拟试题【含答案】第2页
    黑龙江省大庆市肇源2025届九上数学开学教学质量检测模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省大庆市肇源2025届九上数学开学教学质量检测模拟试题【含答案】

    展开

    这是一份黑龙江省大庆市肇源2025届九上数学开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在中,点为的中点,平分,且于点,延长交于点,若,,则的长为( )
    A.B.1C.D.2
    2、(4分)根据《九章算术》的记载中国人最早使用负数,下列四个数中的负数是( )
    A.B.C.D.
    3、(4分)已知下面四个方程: +3x=9;+1=1;=1;=1.其中,无理方程的个数是( )
    A.1B.2C.3D.4
    4、(4分)若二次根式有意义,则x的取值范围为( )
    A.x<1B.x>1C.x≤1D.x≥1
    5、(4分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是( )
    A.5B.8C.12D.14
    6、(4分)下列各点中,在函数 y=2x-5 图象上的点是( )
    A.(0,0)B.(,-4)C.(3,-1)D.(-5,0)
    7、(4分)下列数据中不能作为直角三角形的三边长是( )
    A.1、1、B.5、12、13C.3、5、7D.6、8、10
    8、(4分)下列各式从左到右,是因式分解的是( ).
    A.(y-1)(y+1)=-1B.
    C.(x-2)(x-3)=(3-x)(2-x)D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)函数y=(k+1)x﹣7中,当k满足_____时,它是一次函数.
    10、(4分)如图所示,在△ABC中,AB=AC,D,E分别是AB,AC的中点,G,H为BC上的点连接DH,EG.若AB=5cm,BC=6cm,GH=3cm,则图中阴影部分的面积为_____.
    11、(4分)如图,以正方形ABCD的BC边向外作正六边形BEFGHC,则∠ABE=___________度.
    12、(4分)已知:如图,四边形中,,要使四边形为平行四边形,需添加一个条件是:__________.(只需填一个你认为正确的条件即可)
    13、(4分)函数自变量的取值范围是_________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在▱ABCD中,,P,O分别为AD,BD的中点,延长PO交BC于点Q,连结BP,DQ,求证:四边形PBQD是菱形.
    15、(8分)计算:
    (1);
    (2)已知,求的值.
    16、(8分)如图,已知△ABC中,∠B=90 º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
    (1)出发2秒后,求PQ的长;
    (2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
    (3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
    17、(10分)计算:
    (1)
    (2)
    (3)
    18、(10分)解方程:
    (1)x2=14
    (2)x(x﹣1)=(x﹣2)2
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为______.
    20、(4分)如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为__________.
    21、(4分)如图,正方形ABCD的对角线AC、BD相交于点O,DE平分∠ODA交OA于点E,若AB=2+,则线段OE的长为_____.
    22、(4分)如图,在平面直角坐标系中,点A为,点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数的图象经过点C和AB的中点D,反比例函数图象经过点B,则的值为______.
    23、(4分)如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)春节前夕,某商店根据市场调查,用2000元购进第一批盒装花,上市后很快售完,接着又用4200元购进第二批这种盒装花.已知第二批所购的盒数是第一批所购花盒数的3倍,且每盒花的进价比第一批的进价少6元.求第一批盒装花每盒的进价.
    25、(10分)分别按下列要求解答:
    (1)将先向左平移个单位,再下移个单位,经过两次变换得到,画出,点的坐标为__________.
    (2)将绕顺时针旋转度得到,画出,则点坐标为__________.
    (3)在(2)的条件下,求移动的路径长.
    26、(12分)已知x=,y=,求下列各式的值:
    (1)x2-xy+y2;
    (2).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据等腰三角形三线合一的性质可得BD-DN,AB-AN,再求出CN,然后判断出DM是ABCN的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.
    【详解】
    解:∵AD为∠BAC的平分线,BD⊥AD
    ∴BD=DN,AB=AN=4,
    ∴ CN=AC-AN-6-4=2
    又∵M为△ABC的边BC的中点
    ∴DM是△BCN的中位线,
    ∴мD=CN=×2=1,
    故选:B.
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形三线合一的性质,熟记定理与性质并作辅助线构造出以MD为中位线的三角形是解题的关键.
    2、C
    【解析】
    将各数化简即可求出答案.
    【详解】
    解:A.原式,故A不是负数;
    B.原式,故B不是负数;
    C. 是负数;
    D.原式,故D不是负数;
    故选:C.
    本题考查正数与负数,解题的关键是将原数化简,本题属于基础题型.
    3、A
    【解析】
    无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义即可判断.
    【详解】
    无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义只有第一个方程为无理方程.即+3x=9,1个,
    故选:A.
    本题直接考查了无理方程的概念--根号下含有未知数的方程即为无理方程.准确掌握此概念即可解题..
    4、C
    【解析】
    根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
    【详解】
    根据题意,得:1﹣x≥0,解得:x≤1.
    故选C
    本题考查的知识点为:二次根式的被开方数是非负数.
    5、C
    【解析】
    经过观察5组自变量和相应的函数值得(-1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,(2,12)不符合,即可判定.
    【详解】
    ∵(-1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,当x=2时,y=11≠12
    ∴这个计算有误的函数值是12,
    故选C.
    本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.
    6、B
    【解析】
    只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.
    【详解】
    解:A、把(0,0)代入y=2x-5得:左边=0,右边=2×(0-1)-5=-5,左边≠右边,故A选项错误;
    B、把(,-4)代入y=2x-5得:左边=-4,右边=2×-5=-4,左边=右边,故B选项正确;
    C、把(3,-1)代入y=2x-5得:左边=-1,右边=2×3-5=1,左边≠右边,故C选项错误;
    D、把(-5,0)代入y=2x-5得:左边=0,右边=2×(-5)-5=-15,左边≠右边,故D选项错误.
    故选:B.
    本题主要考查对一次函数图象上点的坐标特征的理解和掌握,能根据点的坐标判断是否在函数的图象上是解此题的关键.
    7、C
    【解析】
    解:A、,能构成直角三角形,故选项错误;
    B、52+122=132,能构成直角三角形,故选项错误;
    C、32+52≠72,不能构成直角三角形,故选项正确;
    D、62+82=102,能构成直角三角形,故选项错误.
    故选C.
    8、D
    【解析】
    解:A、是多项式乘法,不是因式分解,故本选项错误;
    B、结果不是积的形式,故本选项错误;
    C、不是对多项式变形,故本选项错误;
    D、运用完全平方公式分解x2-4x+4=(x-2)2,正确.故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、k≠﹣1.
    【解析】
    根据一次函数的定义即可解答.
    【详解】
    根据一次函数定义得,k+1≠0,
    解得k≠﹣1.
    故答案为:k≠﹣1.
    本题考查了一次函数的定义,熟知形如y=kx+b(k≠0)的函数是一次函数是解决问题的关键.
    10、6cm1.
    【解析】
    用四边形DBCE的面积减去△DOE的面积+△HOG的面积,即可得.
    【详解】
    解:连接DE,作AF⊥BC于F,
    ∵D,E分别是AB,AC的中点,
    ∴DE=BC=3,DE∥BC,
    ∵AB=AC,AF⊥BC,
    ∴BF=BC=3,
    在Rt△ABF中,AF==4,
    ∴△ABC的面积=×6×4=11,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴△ADE的面积=11×=3,
    ∴四边形DBCE的面积=11﹣3=9,
    △DOE的面积+△HOG的面积=×3×1=3,
    ∴图中阴影部分的面积=9﹣3=6(cm1),
    故答案为6cm1.
    本题考查的知识点是三角形中位线定理,解题关键是作适当的辅助线进行解题.
    11、1
    【解析】
    分别求出正方形ABCD的内角∠ABC和正六边形BEFGHC的内角∠CBE的度数,进一步即可求出答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠ABC=90°,
    ∵六边形BEFGHC是正六边形,
    ∴∠CBE=,
    ∴∠ABE=360°-(∠ABC+∠CBE)=360°-(90°+120°)=1°.
    故答案为:1.
    本题主要考查了正多边形的内角问题,属于基础题型,熟练掌握多边形的内角和公式是解题的关键.
    12、.(答案不唯一)
    【解析】
    由AO=OC,根据对角线互相平分的四边形是平行四边形,即可得添加BO=OD即可.
    【详解】
    添加的BO=OD.
    理由:∵在四边形ABCD中,BO=DO,AO=CO,
    ∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).
    此题考查了平行四边形的判定.此题难度不大,注意掌握平行四边形的判定定理是解此题的关键.
    13、
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
    【详解】
    根据题意得:2x+1>0,
    解得:.
    故答案为:.
    函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析.
    【解析】
    根据四边相等的四边形是菱形即可判断
    【详解】
    证明:四边形ABCD是平行四边形,
    ,,



    ,,
    ,,

    四边形PBQD是菱形.
    本题考查菱形的判定、直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    15、 (1)2+;(2)9-6.
    【解析】
    (1)先进行二次根式的乘除法,然后化简,最后合并即可;
    (2)将所求式子进行变形,然后再将x、y值代入进行计算即可.
    【详解】
    (1)原式=()-
    =2+
    =2+;
    (2)∵,

    =(x-y)2+xy-3(x+y)
    =()2+()()-3()
    =8+3-2-6
    =9-6.
    本题主要考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
    16、(1);(2);(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形
    【解析】
    (1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;
    (2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;
    (3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=24,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.
    【详解】
    (1)当t=2时BQ=2×2=4 cm,BP=AB-AP=16-2×1=14 cm ,∠B=90°,
    ∴PQ= = cm
    (2)依题意得: BQ=2t ,BP=16-t
    2t =16-t 解得:t=
    即出发秒钟后,△PQB能形成等腰三角形;
    (3) ①当CQ=BQ时(如下图),则∠C=∠CBQ,
    ∵∠ABC=90°
    ∴∠CBQ+∠ABQ=90°
    ∠A+∠C=90°
    ∴∠A=∠ABQ
    ∴BQ=AQ
    ∴CQ=AQ=10
    ∴BC+CQ=22
    ∴t=22÷2=11秒
    ②当CQ=BC时(如图2),则BC+CQ=24
    ∴t=24÷2=12秒
    ③当BC=BQ时(如图3),过B点作BE⊥AC于点E,
    则BE= ,
    ∴CE=,
    故CQ=2CE=14.4,
    所以BC+CQ=26.4,
    ∴t=26.4÷2=13.2秒
    由上可知,当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形
    此题考查勾股定理,等腰三角形的判定,解题关键在于作辅助线.
    17、(1)4;(2);(3)
    【解析】
    (1)先算括号里面的,再算加减,即可得出答案;
    (2)先除法,再进行通分运算,最后化简,即可得出答案;
    (3)先对括号里面的进行通分,再进行分式的除法运算,即可得出答案.
    【详解】
    解(1)原式=-1+1+4=4
    (2)原式=
    =
    =
    =
    (3)原式=
    =
    =
    (1)本题主要考查,以及负指数幂,注意;
    (2)本题主要考查分式的混合运算,通分、约分、因式分解和约分是解答本题的关键;
    (3)本题主要考查分式的混合运算,通分、约分、因式分解和约分是解答本题的关键.
    18、(1)x=±7;(2)x1=2,x2=1.
    【解析】
    (1)方程整理后,利用平方根定义开方即可求出解;
    (2)方程整理后,利用因式分解法求出解即可.
    【详解】
    (1)方程整理得:x2=19,
    开方得:x=±7;
    (2)方程整理得:x2﹣6x+8=0,
    分解因式得:(x﹣2)(x﹣1)=0,
    解得:x1=2,x2=1.
    此题考查了解一元二次方程﹣因式分解法,以及直接开平方法,熟练掌握各种解法是解本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    解:依题意知,BG=AF=DE=8,EF=FG=2,∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===1.故答案为1.
    点睛:此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.
    20、
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出A1B1=AC,B1C1=AB,A1C1=BC,从而得到△A1B1C1是△ABC周长的一半,依此类推,下一个三角形是上一个三角形的周长的一半,根据此规律求解即可.
    【详解】
    ∵△ABC的三条中位线组成△A1B1C1,
    ∴A1B1=AC,B1C1=AB,A1C1=BC,
    ∴△A1B1C1的周长=△ABC的周长=×3=,
    依此类推,△A2B2C2的周长=△A1B1C1的周长=×=,
    则△A5B5C5的周长为=,
    故答案为.
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.
    21、1.
    【解析】
    分析题目需要添加辅助线,先过E作EF⊥AD于F,设OE=x,则EH=AH=x,AE=x,AO=x+x,在Rt△ABO中,根据勾股定理列方程求解即可.
    【详解】
    如图,过E作EF⊥AD于F,则△AEH是等腰直角三角形,
    ∵DE平分∠ODA,EO⊥DO,EH⊥DH,
    ∴OE=HE,
    设OE=x,则EH=AH=x,AE=x,AO=x+x,
    在Rt△ABO中,
    AO2+BO2=AB2,
    ∴(x+x)2+(x+x)2=(2+)2,
    解得x=1(负值已舍去),
    ∴线段OE的长为1.
    故答案为:1.
    此题考查正方形的性质,解决问题的关键是作辅助线构造直角三角形,运用勾股定理列方程进行计算;
    22、
    【解析】
    过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设C(a,b),则利用相似三角形的性质可得C(4,b),B(10,b),进而得到.
    【详解】
    如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,
    又,

    ∽,
    又是AB的中点,,

    设,则,,
    ,,

    反比例函数的图象经过点C和AB的中点D,

    解得,

    又,


    故答案为.
    本题考查了反比例函数图象上点的坐标特征以及平行四边形的性质,解题的关键是掌握:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    23、
    【解析】
    根据折叠的性质可得出DC=DE、CP=EP,由“AAS”可证△OEF≌△OBP,可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=5-x、BF=PC=3-x,进而可得出AF=2+x,在Rt△DAF中,利用勾股定理可求出x的值,即可得AF的长.
    【详解】
    解:∵将△CDP沿DP折叠,点C落在点E处,
    ∴DC=DE=5,CP=EP.
    在△OEF和△OBP中,
    ,
    ∴△OEF≌△OBP(AAS),
    ∴OE=OB,EF=BP.
    设EF=x,则BP=x,DF=DE-EF=5-x,
    又∵BF=OB+OF=OE+OP=PE=PC,PC=BC-BP=3-x,
    ∴AF=AB-BF=2+x.
    在Rt△DAF中,AF2+AD2=DF2,
    ∴(2+x)2+32=(5-x)2,
    ∴x=
    ∴AF=2+=
    故答案为:
    本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    二、解答题(本大题共3个小题,共30分)
    24、20元
    【解析】
    试题分析:设第一批盒装花每盒的进价为x元,根据第二批所购的盒数是第一批所购花盒数的3倍,每盒花的进价比第一批的进价少6元,列出方程求解即可.
    解:设第一批盒装花每盒的进价为x元,根据题意列方程得:
    =,
    解得:x=20,
    经检验:x=20是原方程的根;
    答:第一批盒装花每盒的进价是20元.
    考点:分式方程的应用.
    25、(1)(-4,5);(2)(3,-6);(3)
    【解析】
    (1)分别作出A,B,C的对应点A1,B1,C1即可;
    (2)分别作出A,B,C的对应点A2,B2,C2即可;
    (3)利用弧长公式计算即可.
    【详解】
    解:(1)△A1B1C1如图所示,点A1的坐标为(-4,5).
    故答案为(-4,5).
    (2)△A2B2C2如图所示.C2(3,-6),
    故答案为(3,-6)
    (3)点A移动的路径长=
    本题考查作图——旋转变换,轨迹,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    26、(1) ;(2) 12.
    【解析】
    试题分析: 由x=,y=,得出x+y=,xy=,由此进一步整理代数式,整体代入求得答案即可.
    试题解析:
    (1)∵x=,y=,
    ∴x+y=,xy=,
    ∴x2-xy+y2=(x+y)2-3xy=7-=;
    (2)===12.
    题号





    总分
    得分
    x
    -1
    0
    1
    2
    3
    y
    2
    5
    8
    12
    14

    相关试卷

    2024年黑龙江省佳木斯市数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024年黑龙江省佳木斯市数学九上开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年黑龙江省大庆市杜尔伯特县数学九上开学经典模拟试题【含答案】:

    这是一份2024年黑龙江省大庆市杜尔伯特县数学九上开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年黑龙江省大庆市大庆中学九上数学开学达标检测模拟试题【含答案】:

    这是一份2024年黑龙江省大庆市大庆中学九上数学开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map