黑龙江省东方红林业局中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
2、(4分)如图,在菱形ABCD中,不一定成立的是
A.四边形ABCD是平行四边形B.
C.是等边三角形D.
3、(4分)矩形的对角线一定具有的性质是( )
A.互相垂直B.互相垂直且相等
C.相等D.互相垂直平分
4、(4分)下列运算正确的是( )
A.=2B.=±2C.D.
5、(4分)正方形的一条对角线之长为4,则此正方形的面积是( )
A.16B.4C.8D.8
6、(4分)如果多项式能用公式法分解因式,那么k的值是( )
A.3B.6C.D.
7、(4分)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断()
A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误
8、(4分)一元二次方程4x2+1=3x的根的情况是( )
A.没有实数根 B.只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知边长为5cm的菱形,一条对角线长为6cm,则另一条对角线的长为________cm.
10、(4分)如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为_____.
11、(4分)若代数式+(x﹣1)0在实数范围内有意义,则x的取值范围为_____
12、(4分)要用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”,首先应假设_____.
13、(4分)数据15、19、15、18、21的中位数为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)成都至西安的高速铁路(简称西成高铁)全线正式运营,至此,从成都至西安有两条铁路线可选择:一条是普通列车行驶线路(宝成线),全长825千米;另一条是高速列车行驶线路(西成高铁),全长660千米,高速列车在西成高铁线上行驶的平均速度是普通列车在宝成线上行驶的平均速度的3倍,乘坐普通列车从成都至西安比乘坐高速列车从成都至西安多用11小时,则高速列车在西成高铁上行驶的平均速度是多少?
15、(8分)小华思考解决如下问题:
原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.
(1)小华进行探索,若将点P,Q的位置特殊化:把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E、F分别在边BC、CD上,如图1.此时她证明了AE=AF,请你证明;
(1)由以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明;
(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,求四边形APCQ的周长的最小值.
16、(8分)的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:,且.
17、(10分)(1)因式分解:x3-4x2+4x
(2)解方程:
(3)解不等式组,并将其解集在数轴上表示出来
18、(10分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=_____.
20、(4分)已知△ABC 的一边长为 10,另两边长分别是方程 x2 14 x 48 0 的两个根若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是_______________.
21、(4分)计算:=_______.
22、(4分)已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.
23、(4分)如果一梯子底端离建筑物9 m远,那么15 m长的梯子可到达建筑物的高度是____m.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,然后在0、±1、±2这5个数中选取一个作为x的值代入求值.
25、(10分)如图是两个全等的直角三角形(和)摆放成的图形,其中,,点B落在DE边上,AB与CD相交于点F.若,求这两个直角三角形重叠部分的周长.
26、(12分)高铁的开通给滕州人民出行带来极大的方便,从滕州到北京相距,现在乘高铁列车比以前乘特快列车少用,已知高铁列车的平均速度是特快列车的2.8倍,求高铁列车的平均行驶速度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据轴对称图形和中心对称图形的概念识别即可.(轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形是指在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合.)
【详解】
解:A 选项不是轴对称图形,是中心对称图形;
B 选项是轴对称图形,不是中心对称图形;
C 选项是轴对称图形,不是中心对称图形;
D 选项既是轴对称图形,又是中心对称图形,
故选D.
本题主要考查轴对称图形和中心对称图形的识别,这是重点知识,必须熟练掌握,关键在于根据概念判断.
2、C
【解析】
菱形是特殊的平行四边形,菱形具有平行四边形的所有性质,菱形是特殊的平行四边形,具有特殊性质:(1)菱形的四条边都相等,(2)菱形的对角线互相平分且垂直,(3)菱形的对角线平分每一组对角,根据菱形的性质进行解答.
【详解】
A选项,因为菱形ABCD,所以四边形ABCD是平行四边形,因此A正确,
B选项,因为AC,BD是菱形的对角线,所以, 因此B正确,
C选项,根据菱形邻边相等可得: 是等腰三角形,但不一定是等边三角形,因此C选项错误,
D选项,因为菱形的对角线平分每一组对角,所以,因此D正确,
故选C.
本题主要考查菱形的性质,解决本题的关键是要熟练掌握菱形的性质.
3、C
【解析】
根据矩形的性质即可判断.
【详解】
因为矩形的对角线相等且互相平分,所以选项C正确,
故选C.
本题考查矩形的性质,解题的关键是记住矩形的性质.
4、A
【解析】
根据,二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变进行计算即可.
【详解】
解:A、,故原题计算正确
B、,故原题计算错误
C、和不是同类二次根式,不能合并,故原题计算错误
D、,故原题计算错误
故选:A
本题考查了二次根式的化简,以及简单的加减运算,认真计算是解题的关键.
5、C
【解析】
根据正方形的面积等于对角线乘积的一半列式计算即可得解.
【详解】
∵正方形的一条对角线长为4,
∴这个正方形的面积=×4×4=8,
故选C.
本题考查了正方形的性质,熟记利用对角线求面积的方法是解题的关键.
6、D
【解析】
由于可以利用公式法分解因式,所以它是一个完全平方式,所以.
故选D.
7、C
【解析】
试题分析:甲的作法正确:
∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.
∵MN是AC的垂直平分线,∴AO=CO.
在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,
∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.
∵AC⊥MN,∴四边形ANCM是菱形.
乙的作法正确:如图,
∵AD∥BC,∴∠1=∠2,∠2=∠1.
∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.
∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.
∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.
∵AB=AF,∴平行四边形ABEF是菱形.
故选C.
8、A
【解析】
先求出△的值,再判断出其符号即可.
【详解】
解:原方程可化为:4x2﹣3x+1=0,
∵△=32﹣4×4×1=-7<0,
∴方程没有实数根.
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8
【解析】
根据菱形的对角线互相垂直平分,得已知对角线的一半是1.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.
【详解】
解:在菱形ABCD中,AB=5,AC=6,
因为对角线互相垂直平分,
所以∠AOB=90°,AO=1,
在RT△AOB中,BO=,
∴BD=2BO=8.
注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.
10、68°
【解析】
只要证明∠EAD=90°,想办法求出∠FAD即可解决问题.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠B=∠ADC=66°,AD∥BC,
∵AE⊥BC,
∴AE⊥AD,
∴∠EAD=90°,
∵F为DE的中点,
∴FA=FD=EF,
∵∠EDC=44°,
∴∠ADF=∠FAD=22°,
∴∠EAF=90°﹣22°=68°,
故答案为:68°.
本题考查平行四边形的性质、直角三角形斜边中线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
11、x≥-3且x≠1
【解析】
根据二次根式有意义的条件可得x+3≥0,根据零次幂底数不为零可得x-1≠0,求解即可.
【详解】
解:由题意得:x+3≥0,且x-1≠0,
解得:x≥-3且x≠1.
故答案为x≥-3且x≠1.
此题主要考查了二次根式和零次幂,关键是掌握二次根式中的被开方数是非负数;a0=1(a≠0).
12、每一个角都小于45°
【解析】
试题分析:反证法的第一步是假设命题的结论不成立,据此可以得到答案.
若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设每一个角都小于45°.
考点:此题主要考查了反证法
点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
13、1
【解析】
将这五个数排序后,可知第3位的数是1,因此中位数是1.
【详解】
将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,
故答案为:1.
考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.
三、解答题(本大题共5个小题,共48分)
14、高速列车在西成高铁上行驶的平均速度为165 km/h
【解析】
设普通列车的平均速度为v km/h,根据题意列出方程即可求出答案.
【详解】
解:设普通列车的平均速度为v km/h,
∴高速列车的平均速度为3vkm/h,
∴由题意可知:=+11,
∴解得:v=55,
经检验:v=55是原方程的解,
∴3v=165,
答:高速列车在西成高铁上行驶的平均速度为165 km/h.
本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.
15、(1)见解析;(1)见解析;(3).
【解析】
(1)根据四边形ABCD是菱形,首先证明∠B=∠D,AB=AD,再结合题意证明,进而证明△AEB≌△AFD,即可证明AE=AF.
(1)根据(1)的证明,再证明△AEP≌△AFQ(ASA),进而证明AP=AQ.
(3)根据题意连接AC,则可证明△ABC为等边三角形,再计算AE的长度,则可计算长APCQ的周长的最小值.
【详解】
(1)证明:如图1,∵四边形ABCD是菱形,
∴∠B+∠C=180°,∠B=∠D,AB=AD,
∵∠EAF=∠B,
∴∠EAF+∠C=180°,
∴∠AEC+∠AFC=180°,
∵AE⊥BC,
∴AF⊥CD,
在△AEB和△AFD中,
,
∴△AEB≌△AFD(AAS),
∴AE=AF;
(1)证明:如图3,由(1)得,∠PAQ=∠EAF=∠B,AE=AF,
∴∠EAP=∠FAQ,
在△AEP和△AFQ中,
,
∴△AEP≌△AFQ(ASA),
∴AP=AQ;
(3)解:如图2,连接AC,
∵∠ABC=60°,BA=BC=2,
∴△ABC为等边三角形,
∵AE⊥BC,
∴BE=EC=1,
同理,CF=FD=1,
∴AE= =1 ,
∴四边形APCQ的周长=AP+PC+CQ+AQ=1AP+CP+CF+FQ=1AP+1CF,
∵CF是定值,当AP最小时,四边形APCQ的周长最小,
∴当AP=AE时,四边形APCQ的周长最小,此时四边形APCQ的周长的最小值=1×1+2=2+2.
本题主要考查菱形的性质,关键在于第三问中的最小值的计算,要使周长最小,当AP=AE时,四边形APCQ的周长最小.
16、证明见解析.
【解析】
分析:连接DE,FG,由BD与CE为中位线,利用中位线定理得到ED与BC平行,FG与BC平行,且都等于BC的一半,等量代换得到ED与FG平行且相等,进而得到四边形EFGD为平行四边形,利用平行四边形的性质即可得证.
详解:证明:连接DE,FG,
,CE是的中位线,
,E是AB,AC的中点,
,,
同理:,,
,,
四边形DEFG是平行四边形,
,.
点睛:此题考查了三角形中位线定理,以及平行线的判定,熟练掌握中位线定理是解本题的关键.
17、(1)x(x-2)2(2)x=2(3)-≤x<2
【解析】
(1)原式提取公因式,再利用完全平方公式分解即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(3)分别求出不等式组中两不等式的解集,找出两解集的公共部分求出解集即可.
【详解】
解:(1)原式=x(x2-4x+4)=x(x-2)2;
(2)去分母得:x-2x+6=4,
解得:x=2,
经检验x=2是分式方程的解;
(3),
由①得:x≥-,
由②得:x<2,
∴不等式组的解集为-≤x<2,
此题考查了解分式方程,熟练掌握运算法则是解本题的关键.
18、 (1)4元/瓶.(2) 销售单价至少为1元/瓶.
【解析】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
【详解】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,
依题意,得:=3×,
解得:x=4,
经检验,x=4是原方程的解,且符合题意.
答:第一批饮料进货单价是4元/瓶;
(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.
设销售单价为y元/瓶,
依题意,得:(450+1350)y﹣1800﹣8100≥2100,
解得:y≥1.
答:销售单价至少为1元/瓶.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
根据点A在正比例函数y=mx上,进而计算m的值,再根据y的值随x值的增大而减小,来确定m的值.
【详解】
解∵正比例函数y=mx的图象经过点A(m,4),
∴4=m1.
∴m=±1
∵y的值随x值的增大而减小
∴m=﹣1
故答案为﹣1
本题只要考查正比例函数的性质,关键在于根据函数的y的值随x值的增大而减小,来判断m的值.
20、1
【解析】
求出方程的解,根据勾股定理的逆定理得出三角形ABC是直角三角形,根据已知得出圆形正好是△ABC的外接圆,即可求出答案.
【详解】
解:解方程x2-14x+48=0得:x1=6,x2=8,
即△ABC的三边长为AC=6,BC=8,AB=10,
∵AC2+BC2=62+82=100,AB2=100,
∴AB2=AC2+BC2,
∴∠C=90°
∵若用一圆形纸片将此三角形完全覆盖,
则该圆形纸片正好是△ABC的外接圆,
∴△ABC的外接圆的半径是AB=1,
故答案为1.
本题考查勾股定理的逆定理,三角形的外接圆与外心,解一元二次方程的应用.
21、3
【解析】
先把化成,然后再合并同类二次根式即可得解.
【详解】
原式=2.
故答案为
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.
22、2
【解析】
设y=k(x+1),把x=1,y=2代入,求的k,确定x,y的关系式,然后把x=-1,代入解析式求对应的函数值即可.
【详解】
解:∵y与x+1成正比例,
∴设y=k(x+1),
∵x=1时,y=2,
∴2=k×2,即k=1,
所以y=x+1.
则当x=-1时,y=-1+1=2.
故答案为2.
本题考查了正比例函数关系式为:y=kx(k≠2)),只需一组对应量就可确定解析式.也考查了给定自变量会求对应的函数值.
23、12
【解析】
∵直角三角形的斜边长为15m,一直角边长为9m,
∴另一直角边长=,
故梯子可到达建筑物的高度是12m.
故答案是:12m.
二、解答题(本大题共3个小题,共30分)
24、,-
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.
【详解】
解:原式=,
当x=0时,原式=-.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
25、
【解析】
根据全等三角形的性质得出BC=EC,∠ABC=∠E=60°,求出△BCE是等边三角形,求出∠DCB=30°,∠BFC=90°,解直角三角形求出BF和CF,即可求出答案.
【详解】
解:如图
∵,,
∴,,
∴是等边三角形,
∴,
又∵,
∴,
又∵,在中,
∴,,
∴的周长是.
本题考查了全等三角形的性质,含30°角的直角三角形的性质,等边三角形的性质和判定,求出BF和CF的长是解此题的关键.
26、高铁列车平均速度为.
【解析】
设特快列车平均速度为,则高铁列车平均速度为,根据现在乘高铁列车比以前乘特快列车少用 列方程求解即可.
【详解】
设特快列车平均速度为,则高铁列车平均速度为,
由题意得:,
解得:,
经检验:是原方程的解,
则;
答:高铁列车平均速度为.
本题是分式方程的应用,属于行程问题;两类车:高铁和特快,路程都是,高铁列车的平均速度是特快列车的倍,时间相差,根据速度的关系设未知数,根据时间的关系列方程,注意分式方程要检验.
题号
一
二
三
四
五
总分
得分
批阅人
哈尔滨市重点中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份哈尔滨市重点中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省中学山市小榄镇2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份广东省中学山市小榄镇2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
甘肃省白银市育才中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】: 这是一份甘肃省白银市育才中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。