黑龙江省黑河市2024年数学九上开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四组线段中,可以构成直角三角形的是( )
A.1,2,3B.2,3,4C.3,4,5D.4,5,6
2、(4分)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)下列调查中,适合用普查方式的是( )
A.夏季冷饮市场上某种冰淇淋的质量B.某品牌灯泡的使用寿命
C.某校九年级三班学生的视力D.公民保护环境的意识
4、(4分)不等式组的整数解有三个,则a的取值范围是( )
A.﹣1≤a<0B.﹣1<a≤0C.﹣1≤a≤0D.﹣1<a<0
5、(4分)在函数中的取值范围是( )
A.B.C.D.
6、(4分)多项式m2﹣4与多项式m2﹣4m+4的公因式是( )
A.m﹣2B.m+2C.m+4D.m﹣4
7、(4分)已知:以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,则这个三角形是( )
A.等腰三角形B.直角三角形
C.等边三角形D.等腰直角三角形
8、(4分)下列事件是确定事件的是( )
A.射击运动员只射击1次,就命中靶心
B.打开电视,正在播放新闻
C.任意一个三角形,它的内角和等于180°
D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于的方程无解,则的值为________.
10、(4分)如图,在中,,,,把绕边上的点顺时针旋转90°得到,交于点,若,则的长是________.
11、(4分)如图,以Rt△ABC的斜边BC为边在三角形ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6,则△ABC的面积为_____.
12、(4分)在矩形ABCD中,AB=6cm,BC=8cm,则点A到对角线BD的距离为_____.
13、(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为4,则第n个矩形的面积为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组:
请结合题意填空,完成本题解答:
(1)解不等式①,得______;
(2)解不等式②,得______;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为______.
15、(8分)如图1是一个有两个圆柱形构成的容器,最下面的圆柱形底面半径。匀速地向空容器内注水,水面高度(单位:米)与时间(单位:小时)的关系如图2所示。
(1)求水面高度与时间的函数关系式;
(2)求注水的速度(单位:立方米/每小时),并求容器内水的体积与注水时间的函数关系式;
(3)求上面圆柱的底面半径(壁厚忽略不计)。
16、(8分)解不等式组并求出其整数解
17、(10分)积极推行节能减排,倡导绿色出行,“共享单车”、共享助力车”先后上市,为人们出行提供了方便.某人去距离家千米的单位上班,骑“共享助力车”可以比骑“共享单车”少用分钟,已知他骑“共享助力车”的速度是骑“共享单车”的倍,求他骑“共享助力车”上班需多少分钟?
18、(10分)如图,菱形 ABCD 中,∠ABC=60°,有一度数为 60°的∠MAN 绕点 A 旋转.
(1)如图①,若∠MAN 的两边 AM、AN 分别交 BC、CD 于点 E、F,则线段 CE、DF的大小关系如何?请证明你的结论.
(2)如图②,若∠MAN 的两边 AM、AN 分别交 BC、CD 的延长线于点 E、F,则线段CE、DF 还有(1)中的结论吗?请说明你的理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2,则CF的长为______________。
20、(4分)已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.
21、(4分)如图,在正方形中,是边上的点.若的面积为,,则的长为_________.
22、(4分)已知:AB=2m,CD=28cm,则AB:CD=_____.
23、(4分)若一个三角形的三边的比为3:4:5,则这个三角形的三边上的高之比为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并把它的解集在数轴上表示出来.
25、(10分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D为AC边上的个动点,点D从点A出发,沿边AC向C运动,当运动到点C时停止,设点D运动时间为t秒,点D运动的速度为每秒1个单位长度的.
(1)当t=2时,求CD的长;
(2)求当t为何值时,线段BD最短?
26、(12分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写 的英语水平测试,他们各项的成绩(百分制)如下:
(1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?
(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照 3∶4∶2∶1 的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看, 应该录取谁?
(3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照 1∶2∶3∶4 的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看, 应该录取谁?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股定理的逆定理逐项判断即可.
【详解】
A、12+22≠32,不能构成直角三角形,故不符合题意;
B、22+32≠42,不能构成直角三角形,故不符合题意;
C、32+42=52,能构成直角三角形,故符合题意;
D、42+52≠62,不能构成直角三角形,故不符合题意.
故选:C.
本题考查勾股定理的逆定理,如果三角形的三边长为a,b,c,有下面关系:a2+b2=c2,那么这个三角形是直角三角形.
2、B
【解析】
试题分析:第一象限点的坐标为(+,+);第二象限点的坐标为(-,+);第三象限点的坐标为(-,-);第四象限点的坐标为(+,-),则点P在第二象限.
考点:平面直角坐标系中的点
3、C
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此解答即可.
【详解】
解:A、夏季冷饮市场上某种冰淇淋的质量,适合抽样调查,故本选项错误;
B、某品牌灯泡的使用寿命,适合抽样调查,故本选项错误;
C、某校九年级三班学生的视力,适合全面调查,故本选项正确;
D、调查公民保护环境的意识,适合抽样调查,故本选项错误.
故选:C.
本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、B
【解析】
根据不等式组的整数解有三个,确定出a的范围即可.
【详解】
∵不等式组的整数解有三个,
∴这三个整数解为2、1、0,
则﹣1<a≤0,
故选:B.
此题考查了一元一次不等式组的整数解,表示出不等式组的解集是解本题的关键.
5、C
【解析】
根据分母不等于0列式计算即可得解.
【详解】
根据题意得,,
解得.
故选C.
本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
6、A
【解析】
根据公因式定义,对各选项整理然后即可选出有公因式的项.
【详解】
解:,,
与多项式的公因式是,
故选:A.
此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“”.
7、A
【解析】
根据题意得到a-b=0或b-c=0,从而得到a=b或b=c,得到该三角形为等腰三角形.
【详解】
解:因为以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,
所以a﹣b=0或b﹣c=0,
得到a=b或b=c,
所以三角形为等腰三角形,
故选:A.
本题考查等腰三角形,解题的关键是掌握等腰三角形的性质.
8、C
【解析】
利用随机事件以及确定事件的定义分析得出答案.
【详解】
A.射击运动员只射击1次,就命中靶心,是随机事件. 故选项错误;
B.打开电视,正在播放新闻,是随机事件.故选项错误;
C.任意一个三角形,它的内角和等于180°,是必然事件.故选项正确;
D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件.故选项错误.
故选C.
本题考查了随机事件和确定事件,正确把握相关事件的确定方法是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1.
【解析】
分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.
【详解】
解:去分母得:2x-1=x+1+m,
整理得:x=m+2,
当m+2= -1,即m= -1时,方程无解.
故答案为:-1.
本题考查分式方程的解,分式方程无解分为最简公分母为0的情况与分式方程转化为的整式方程无解的情况.
10、2
【解析】
在Rt△ACB中,,由题意设BD=B′D=AE=x,由△EDB′∽△ACB,可得,推出,可得,求出x即可解决问题。
【详解】
解:在中,,
由题意设,
∵,
∴,
∴,
∴,
∴,
∴,
故答案为2.
本题考查旋转变换、直角三角形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会理由参数构建方程解决问题,所以中考常考题型.
11、32
【解析】
在上截取,连接,根据、、、四点共圆,推出,证,推出,,得出等腰直角三角形,根据勾股定理求出,即可求出.由三角形面积公式即可求出Rt△ABC的面积.
【详解】
解:在上截取,连接,
四边形是正方形,,
,,
、、、四点共圆,
,
在和中
,
,
,,
,
,
即是等腰直角三角形,
由勾股定理得:,
即.
∴= 4
故答案为:32
本题主要考查对勾股定理,正方形的性质,直角三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,利用旋转模型构造三角形全等和等腰直角三角形是解此题的关键.
12、4.8cm
【解析】
作AE⊥BD于E,由矩形的性质和勾股定理求出BD,由△ABD的面积的计算方法求出AE的长即可.
【详解】
如图所示:作AE⊥BD于E,
∵四边形ABCD是矩形,
∴∠BAD=90°,AD=BC=8cm,
∴BD==10cm,
∵△ABD的面积=BD•AE=AB•AD,
∴AE== =4.8cm,
即点A到对角线BD的距离为4.8cm,
故答案为:4.8cm.
考查了矩形的性质、勾股定理、三角形面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
13、
【解析】
第二个矩形的面积为第一个矩形面积的,第三个矩形的面积为第一个矩形面积的,依此类推,第n个矩形的面积为第一个矩形面积的.
【详解】
解:第二个矩形的面积为第一个矩形面积的;
第三个矩形的面积是第一个矩形面积的;
…
故第n个矩形的面积为第一个矩形面积的.
又∵第一个矩形的面积为4,
∴第n个矩形的面积为.
故答案为:.
本题考查了矩形、菱形的性质.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
三、解答题(本大题共5个小题,共48分)
14、(1)x≤2;(2)x>-3;(3)把不等式①和②的解集在数轴上表示见解析;(4)-3<x≤2,
【解析】
(1)根据不等式的基本性质解不等式即可;
(2)根据不等式的基本性质解不等式即可;
(3)根据数轴表示解集的方法表示即可;
(4)根据不等式组公共解集的取法即可得出结论.
【详解】
(1)解不等式①,得x≤2
故答案为:x≤2;
(2)解不等式②,得x>-3
故答案为:x>-3;
(3)把不等式①和②的解集在数轴上表示出来如下:
(4)原不等式组的解集为-3<x≤2,
此题考查的是解不等式组,掌握不等式的基本性质和利用数轴表示解集是解决此题的关键.
15、(1);(2);(3)4
【解析】
(1)由待定系数法可求水面高度h与时间t的函数关系式;
(2)由下面的圆柱形的体积=注水的速度×时间,可列方程,求出注水速度,即可求容器内水的体积V与注水时间t的函数关系式;
(3)由上面的圆柱形的体积=注水的速度×时间,可列方程,求解即可.
【详解】
(1)当0≤t≤1时,设水面高度h与时间t的函数关系式:h=kt,且过(1,1)
∴1=k
∴当0≤t≤1时,设水面高度h与时间t的函数关系式:h=t
当1<t≤2时,设水面高度h与时间t的函数关系式:h=mt+n,且过(1,1),(2,5)
∴
解得:
∴当1<t≤2时,设水面高度h与时间t的函数关系式:h=4t-3
所以水面高度与时间的函数关系是
(2)由图2知,注满下面圆柱所花的时间是小时,下面圆柱的高度是米,设注水的速度为立方米/每小时,那么有
得注水的速度(立方米∕每小时);
容器内水的体积与注水时间的函数关系式为:
(3)由题意知,上面圆柱的容积与下面圆柱的容积相等,且它的高度为4米,
于是有,解得
即上面圆柱的底面半径为米.
本题是一次函数综合题,考查待定系数法求解析式,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16、;其整数解为大于的所有整数.
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解不等式,得:,
解不等式,得:,
则不等式的解集为,
不等式的整数解为大于的所有整数.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
17、20分钟
【解析】
他骑“共享助力车”上班需x分钟,根据骑“共享助力车”的速度是骑“共享单车”的倍列分式方程解得即可.
【详解】
设他骑“共享助力车”上班需x分钟,
,
解得x=20,
经检验,x=20是原分式方程的解,
答:他骑“共享助力车”上班需20分钟.
此题考查分式方程的实际应用,正确理解题意是解题的关键.
18、(1)CE=DF,证明见解析;(2)仍然有CE=DF,理由见解析.
【解析】
(1)CE=DF;连接AC,易得△ABC、△ACD为正三角形,再根据等边三角形的性质,利用ASA可判定△AEC≌△AFD,即得CE=DF;
(2)结论CE=DF仍然成立,同(1)类似证明△ACE≌△ADF,即得结论.
【详解】
解:(1))CE=DF;
证明:如图③,连接AC,
在菱形ABCD中,∵∠ABC=60°,
∴△ABC、△ACD为正三角形.
∵AC=AD,∠ACE=∠ADF=60°,∠CAE=∠DAF=60°-∠CAF,
∴△AEC≌△AFD(ASA).
∴CE=DF.
(2)结论CE=DF仍然成立,如图④,连接AC,
在菱形ABCD中,∵∠ABC=60°,
∴△ABC、△ACD为正三角形.
∵AC=AD,∠ACB=∠ADC=60°,
∴∠ACE=∠ADF=120°.
∵∠CAE=∠DAF=60°-∠DAE,
∴△ACE≌△ADF(ASA).
∴CE=DF.
本题主要考查菱形的性质、等边三角形的判定和性质以及全等三角形的判定与性质的综合应用,解此题的关键是正确添加辅助线,熟知全等三角形判定的方法和等边三角形的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8或4
【解析】
由题意先求出AE=3,ED=6,因为EF=2>AB,分情况讨论点F在点E的左侧和右侧的情况,根据勾股定理求出GE(EH)即可求解.
【详解】
解:∵AD=9,AE:ED=1:2,
∴AE=3,ED=6,
又∵EF=2>AB,分情况讨论:
如下图:
当点F在点E的左侧时,做FG垂直AD,则FCDG为矩形,AB=FG,
CF=GD=ED+GE,在RT三角形GFE中,GE==2,
则此时CF=6+2=8;
如下图:
当点F在点E的右侧时,做FH垂直AD,同理可得CF=ED-EH,HF=AB=4,EH=2,
则此时CF=6-2=4;
综上,CF的长为8或4.
本题考查矩形,直角三角形的性质,也考查勾股定理解三角形,注意分情况讨论.
20、或
【解析】
先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.
【详解】
根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),
则×2×|b|=1,
解得|b|=1,
∴b=±1,
①当b=1时,与y轴交点为(0,1),
∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;
②当b=-1时,与y轴的交点为(0,-1),
∴2k-1=0,解得k=,∴函数解析式为y=-x-1,
综上,这个一次函数的解析式是或,
故答案为:或.
本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.
21、
【解析】
过E作EM⊥AB于M,利用三角形ABE的面积进行列方程求出AB的长度,再利用勾股定理求解BE的长度即可.
【详解】
过E作EM⊥AB于M,
∵四边形ABCD是正方形,
∴AD=BC=CD=AB,
∴EM=AD,BM=CE,
∵△ABE的面积为4.5,
∴×AB×EM=4.5,
解得:EM=3,
即AD=DC=BC=AB=3,
∵DE=1
∴CE=2,
由勾股定理得:BE= .
故答案为
本题考查了正方形的性质、三角形的面积及勾股定理,掌握正方形的性质及勾股定理是解题的关键.
22、50:7
【解析】
先将2m转换为200cm,再代入计算即可.
【详解】
∵AB=2m=200cm,CD=28cm,
∴AB:CD=200:28=50:7.
故答案为50:7.
本题考查比例线段,学生们掌握此定理即可.
23、20:15:1.
【解析】
根据勾股定理的逆定理得到这个三角形是直角三角形,根据三角形的面积公式求出斜边上的高,然后计算即可.
【详解】
解:设三角形的三边分别为3x、4x、5x,
∵(3x)2+(4x)2=25x2=(5x)2,
∴这个三角形是直角三角形,
设斜边上的高为h,
则×3x×4x=×5x×h,
解得,h=,
则这个三角形的三边上的高之比=4x:3x:=20:15:1,
故答案为:20:15:1.
本题考查的是勾股定理的逆定理、三角形的面积计算,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
二、解答题(本大题共3个小题,共30分)
24、不等式组的解集是,数轴表示见解析.
【解析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【详解】
,
解不等式,得,
解不等式,得,
不等式组的解集是.
解集在数轴上表示如图:
.
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
25、(1)8;(2)
【解析】
(1)根据勾股定理即可得到结论;
(2)根据相似三角形的判定和性质定理即可得到结论.
【详解】
(1)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,
∴AC= =10,
当t=2时,AD=2,
∴CD=8;
(2)当BD⊥AC时,BD最短,
∵BD⊥AC,
∴∠ADB=∠ABC=90°,
∵∠A=∠A,
∴△ABD∽△ACB,
∴,即:,
∴AD=,
∴t=,
∴当t为时,线段BD最短.
本题主要考查勾股定理,相似三角形的性质和判定定理,掌握“母子相似”模型,是解题的关键.
26、(1) 应该录取丙;(2) 应该录取甲;(3)应该录取乙
【解析】
(1)分别算出甲乙丙的平均数,比较即可;
(2)由听、说、读、写按照的比3∶4∶2∶1确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可;
(3) 由听、说、读、写按照的比1∶2∶3∶4确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.
【详解】
(1)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵80.5>80.25>80
∴应该录取丙
(2)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵82.1>81>79.1
∴应该录取甲
(3)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵81.6>80.1>78.8
∴应该录取乙.
本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
应试者
听
说
读
写
甲
82
86
78
75
乙
73
80
85
82
丙
81
82
80
79
黑龙江省甘南县联考2024-2025学年数学九上开学综合测试模拟试题【含答案】: 这是一份黑龙江省甘南县联考2024-2025学年数学九上开学综合测试模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届黑龙江省鹤岗市名校数学九上开学综合测试试题【含答案】: 这是一份2025届黑龙江省鹤岗市名校数学九上开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2025届黑龙江省哈尔滨市延寿县数学九上开学综合测试模拟试题【含答案】: 这是一份2025届黑龙江省哈尔滨市延寿县数学九上开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。