黑龙江省鸡西市名校2025届九年级数学第一学期开学联考试题【含答案】
展开
这是一份黑龙江省鸡西市名校2025届九年级数学第一学期开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,AB=4,AD=6,DE平分∠ADC,则BE的长为( )
A.1B.2C.3D.4
2、(4分)若分式的值等于0,则的取值是( ).
A.B.C.D.
3、(4分)如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),则“兵”位于点( )
A.(﹣1,1)B.(﹣4,1)C.(﹣2,﹣1)D.(1,﹣2)
4、(4分)如图在5×5的正方形网格中(每个小正方形的边长为1个单位长度),格点上有A、B、C、E五个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接( )
A.AEB.ABC.ADD.BE
5、(4分)在下列交通标志中,是中心对称图形的是( )
A.B.
C.D.
6、(4分)平行四边形所具有的性质是( )
A.对角线相等B.邻边互相垂直
C.每条对角线平分一组对角D.两组对边分别相等
7、(4分)为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是( )
A.总体B.样本C.个体D.样本容量
8、(4分)从下面四个条件中任意选两个,能使四边形ABCD是平行四边形选法有( )
①;②;③;④
A.2种B.3种C.4种D.5种
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数y=kx+b的图像过点(-1,0)和点(0,2),则该一次函数的解析式是______。
10、(4分)如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是10和19,则△CDE的面积为_____________.
11、(4分)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A,B,C分别落在点A',B',C'处,且点A',C',B在同一条直线上,则AB的长为__________.
12、(4分)若分式方程有增根x=2,则a=___.
13、(4分)如图,某公司准备和一个体车主或一民营出租车公司中的一家签订月租车合同,设汽车每月行驶,个体车主收费为元,民营出租车公司收费为元,观察图像可知,当_________时,选用个体车主较合算.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,∠B=90°,AB=3,BC=4,CD=12,AD=13,点E是AD的中点,求CE的长.
15、(8分)在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:
请你根据以上统计图中的信息,解答下列问题:
(1)该班有学生多少人?
(2)补全条形统计图;
(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?
16、(8分)如图1,□ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的□A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.
(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)
(2)若△OA′C的面积为9,求t的值;
(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.
17、(10分)分别按下列要求解答:
(1)将先向左平移个单位,再下移个单位,经过两次变换得到,画出,点的坐标为__________.
(2)将绕顺时针旋转度得到,画出,则点坐标为__________.
(3)在(2)的条件下,求移动的路径长.
18、(10分)为了考察包装机包装糖果质量的稳定性,从中抽取10袋,测得它们的实际质量(单位:g)如下:
505,504,505,498,505,502,507,505,503,506
(1)求平均每袋的质量是多少克.
(2)求样本的方差.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在ABCD中,线段BE、CE分别平分∠ABC和∠BCD,若AB=5,BE=8,则CE的长度为________.
20、(4分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____ 边形.
21、(4分)若关于x的分式方程=2a无解,则a的值为_____.
22、(4分)如图,在正方形外取一点,连接、、.过点作的垂线交于点,连接.若,,下列结论:①;②;③点到直线的距离为;④,其中正确的结论有_____________(填序号)
23、(4分)如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=__.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形中,,分别是,上两个点,.
(1)如图1,与的关系是________;
(2)如图2,当点是的中点时,(1)中的结论是否仍然成立,若成立,请进行证明;若不成立,说明理由;
(3)如图2,当点是的中点时,求证:.
25、(10分)我们知道:“距离地面越高,气温越低.”下表表示的是某地某时气温随高度变化而变化的情况
(1)请你用关系式表示出与的关系;
(2)距离地面的高空气温是多少?
(3)当地某山顶当时的气温为,求此山顶与地面的高度.
26、(12分)对于实数a,b,定义运算“*”,a*b=例如4*1.因为4>1,所以4*1=41-4×1=8,若x1、x1是一元二次方程x1-9x+10=0的两个根,则x1*x1=__.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
只要证明CD=CE=4,根据BE=BC-EC计算即可.
【详解】
∵四边形ABCD是平行四边形,
∴AB=CD=4,AD=BC=6,
∵AD∥BC,
∴∠ADE=∠DEC,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠DEC=∠CDE,
∴DC=CE=AB=4,
∴BE=BC-CE=6-4=2,
故选B.
本题考查了平行线性质,等腰三角形的性质和判定,平行四边形性质等知识点,关键是求出BC、CE的长.
2、C
【解析】
分式值为零的条件是分子等于零且分母不等于零.
【详解】
∵分式的值等于1,
∴x-2=1,x+1≠1.
解得:x=2.
故选C.
本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.
3、B
【解析】
根据“帅”位于点(-2,-2),“马”位于点(1,-2),可知原点位置,然后可得“兵”的坐标.
【详解】
解:如图
∵“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),
∴原点在这两个棋子的上方两个单位长度的直线上且在马的左边,距离马的距离为1个单位的直线上,两者的交点就是原点O,
∴“兵”位于点(﹣4,1).
故选:B.
本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.
4、C
【解析】
根据勾股定理求出AD,BE,根据算术平方根的大小比较方法解答.
【详解】
AE=4,
AB=3,
由勾股定理得AD=,3<<4,
BE==1.
故选C.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
5、C
【解析】
解:A图形不是中心对称图形;
B不是中心对称图形;
C是中心对称图形,也是轴对称图形;
D是轴对称图形;不是中心对称图形
故选C
6、D
【解析】
根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.
【详解】
平行四边形的对角相等,对角线互相平分,对边平行且相等.
故选D.
此题考查平行四边形的性质,解题关键在于掌握其性质.
7、B
【解析】
根据总体、个体、样本、样本容量的定义逐个判断即可.
【详解】
解:抽出的500名考生的数学成绩是样本,
故选B.
本题考查了总体、个体、样本、样本容量等知识点,能熟记总体、个体、样本、样本容量的定义是解此题的关键.
8、C
【解析】
根据平行四边形的五种判定方法,灵活运用平行四边形的判定定理,可作出判断.
【详解】
解:①和③根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;
①和②,③和④根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
②和④根据两组对边分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
所以能推出四边形ABCD为平行四边形的有四组
故选C.
本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=2x+2
【解析】
根据一次函数解析式y=kx+b,再将点(-1,0)和点(0,2)代入可得方程组,解出即可得到k和b的值,即得到解析式.
【详解】
因为点(-1,0)和点(0,2)经过一次函数解析式y=kx+b,所以0=-x+b,2=b,得到k=2,b=2,所以一次函数解析式是:y=2x+2,故本题答案是:y=2x+2.
本题考查用待定系数法求一次函数解析式,难度不大,关键是掌握待定系数发的运用.
10、
【解析】
根据三角形的面积公式,已知边CD的长,求出CD边上的高即可.过E作EH⊥CD,易证△ADG与△HDE全等,求得EH,进而求△CDE的面积.
【详解】
过E作EH⊥CD于点H.
∵∠ADG+∠GDH=∠EDH+∠GDH,
∴∠ADG=∠EDH.
又∵DG=DE,∠DAG=∠DHE.
∴△ADG≌△HDE.
∴HE=AG.
∵四边形ABCD和四边形DEFG都是正方形,面积分别是5和1.即AD2=5,DG2=1.
∴在直角△ADG中,
AG=,
∴EH=AG=2.
∴△CDE的面积为CD·EH=××2=.
故答案为.
考查了勾股定理、全等三角形的判定与性质、正方形的性质,正确作出辅助线,构造全等三角形是解决本题的关键.
11、
【解析】
由C′D∥BC,可得比例式,设AB=a,构造方程即可.
【详解】
设AB=a,根据旋转的性质可知C′D=a,A′C=2+a,
∵C′D∥BC,
∴,即,
解得a=−1− (舍去)或−1+.
所以AB长为.
故答案为.
本题主要考查了旋转的性质、相似三角形的判定和性质,解题的关键是找到图形中相似基本模型“A”型.
12、﹣2.
【解析】
先化简分式方程,再根据分式方程有增根的条件代入方程,最后求出方程的解即可.
【详解】
去分母得:x+2+ax=3x﹣6,
把x=2代入得:4+2a=0,
解得:a=﹣2,
故答案为:﹣2.
此题考查分式方程的解,解题关键在于掌握运算法则
13、
【解析】
选用个体车较合算,即对于相同的x的值,y1对应的函数值较小,依据图象即可判断.
【详解】
解:根据图象可以得到当x>1500千米时,y1<y2,则选用个体车较合算.
故答案为
此题为一次函数与不等式的简单应用,搞清楚交点意义和图象的相对位置是关键.
三、解答题(本大题共5个小题,共48分)
14、6.5
【解析】
在Rt△ABC中,由勾股定理可求得AC=5,由勾股定理的逆定理判定△ACD为直角三角形,然后根据在直角三角形中,斜边上的中线等于斜边的一半即可得解.
【详解】
解:在Rt△ABC中,∠B=90°,
∵AB=3,BC=4,
∴,
∵CD=12,AD=13,
∴AC2+CD2=52+122=169=AD2,
∴△ACD是直角三角形,
∵点E是AD的中点,
∴CE=.
本题考查勾股定理,勾股定理的逆定理和直角三角形斜边上的中线,学生需熟练掌握其内容.
15、(1)因为捐2本的人数是15人,占30%,所以该班人数为=50
(2)根据题意知,捐4本的人数为:50-(10+15+7+5)=1.(如图)
(3)七(1)班全体同学所捐献图书的中位数是=3(本),众数是2本.
【解析】
(1)根据捐2本的人数是15人,占30%,即可求得总人数;
(2)首先根据总人数和条形统计图中各部分的人数计算捐4本的人数,进而补全条形统计图;
(3)根据中位数和众数的定义解答
16、(1)▱A′B′CD如图所示见解析,A′(2,2t);(2)t=3;(3)m=1.
【解析】
(1)根据题意逐步画出图形.(2)根据三角形的面积计算方式进行作答.(3)根据平移的相关性质进行作答.
【详解】
(1)▱A′B′CD如图所示,A′(2,2t).
(2)∵C′(4,t),A(2,0),
∵S△OA′C=10t﹣×2×2t﹣×6×t﹣×4×t=2.
∴t=3.
(3)∵D(0,t),B(6,0),
∴直线BD的解析式为y=﹣x+t,
∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),
把点A(2,2t)代入得到,2t=﹣+t+,
解得m=1.
本题主要考查了三角形的面积计算方式及平移的相关性质,熟练掌握三角形的面积计算方式及平移的相关性质是本题解题关键.
17、(1)(-4,5);(2)(3,-6);(3)
【解析】
(1)分别作出A,B,C的对应点A1,B1,C1即可;
(2)分别作出A,B,C的对应点A2,B2,C2即可;
(3)利用弧长公式计算即可.
【详解】
解:(1)△A1B1C1如图所示,点A1的坐标为(-4,5).
故答案为(-4,5).
(2)△A2B2C2如图所示.C2(3,-6),
故答案为(3,-6)
(3)点A移动的路径长=
本题考查作图——旋转变换,轨迹,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
18、(1)平均数为504;(2)方差为5.8.
【解析】
(1)根据算术平均数的定义计算可得;
(2)根据方差的定义计算可得.
【详解】
(1)平均数:(5+4+5-2+5+2+7+5+3+6)+500=504
(2)方差:(1+0+1+36+1+4+9+1+1+4)=5.8
本题主要考查方差,解题的关键是掌握方差的定义和计算公式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6
【解析】
根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到CE即可.
【详解】
解:∵BE和CE分别平分∠ABC和∠BCD,
∴∠ABE=∠EBC,∠DCE=∠ECB,
∵▱ABCD,
∴AB∥CD,AB=CD=5,
∴∠ABC+∠DCB=180°,∠AEB=∠EBC,∠DEC=∠ECB,
∴(∠ABC+∠DCB)=90°,∠ABE=∠AEB,∠DEC=∠DCE,
∴∠EBC+∠ECB=90°,AB=AE=5,CD=DE=AB=5,
∴△EBC是直角三角形,AD=BC=AE+ED=10
根据勾股定理:CE=.
故答案为6
本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
20、六
【解析】
n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.
【详解】
设多边形的边数为n,依题意,得:
(n﹣2)•180°=2×360°,
解得n=6,
故答案为:六.
本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.
21、1或
【解析】
分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.
详解:去分母得:
x-3a=2a(x-3),
整理得:(1-2a)x=-3a,
当1-2a=0时,方程无解,故a=;
当1-2a≠0时,x==3时,分式方程无解,
则a=1,
故关于x的分式方程=2a无解,则a的值为:1或.
故答案为1或.
点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.
22、①②④
【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
③过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可。
【详解】
解:
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
∴△APD≌△AEB(SAS);
故此选项成立;
②∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
③过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又
∴点B到直线AE的距离为
故此选项不正确;
④如图,连接BD,
在Rt△AEP中,
∵AE=AP=1,
又
∵△APD≌△AEB,
= S正方形ABCD
故此选项正确.
∴正确的有①②④,
故答案为:①②④
本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.
23、1
【解析】
根据三角形的中位线定理得到PQ=BC,得到相似比为,再根据相似三角形面积之比等于相似比的平方,可得到结果.
【详解】
解:∵P,Q分别为AB,AC的中点,
∴PQ∥BC,PQ=BC,
∴△APQ∽△ABC,
∴ =()2=,
∵S△APQ=1,
∴S△ABC=4,
∴S四边形PBCQ=S△ABC﹣S△APQ=1,
故答案为1.
本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)成立,证明见解析;(3)见解析
【解析】
(1)因为,ABCD是正方形,所以AE=DF,可证△ADF≌BAE,可得=,再根据角∠AEB=∠AFD,∠DAF+∠AFD=90°,可得∠DAF+∠AEB=90°,可得;
(2)成立,因为E为AD中点,所以AE=DF,可证△ABE≌△DAF,可得=,再根据角∠AEB=∠AFD,∠DAF+∠AFD=90°,得到∠DAF+∠AEB=90°,可得;
(3) 如解图,取AB中点H,连接CH交BG于点M,由(2)得,可证,所以MH为△AGB的中位线,所以M为BG中点,所以CM为BG垂直平分线,所以.
【详解】
解:(1)AF=BE且AF⊥BE.理由如下:
证明:∵,ABCD为正方形
AE=AD-DE,DF=DC-CF
∴AE=DF
又∵∠BAD=∠D=90°,AB=AD
∴△ABE≌△DAF
∴AF=BE,∠AEB=∠AFD
∵在直角△ADF中,∠DAF+∠AFD=90°
∴∠DAF+∠AEB=90°
∴∠AGE=90°
∴AF⊥BE;
(2)成立,AF=BE且AF⊥BE.理由如下:
证明:∵E、F分别是AD、CD的中点,
∴AE=AD,DF=CD
∴AE=DF
又∵∠BAD=∠D=90°,AB=AD
∴△ABE≌△DAF
∴AF=BE,∠AEB=∠AFD
∵在直角△ADF中,∠DAF+∠AFD=90°
∴∠DAF+∠AEB=90°
∴∠AGE=90°
∴AF⊥BE
(3)取AB中点H,连接CH交BG于点M
∵H、F分别为AB、DC中点,AB∥CD,
∴AH=CF,
∴四边形AHCF是平行四边形,
∴AF∥CH,
又∵由(2)得,
∴,
∵AF∥CH,H为AB中点,
∴M为BG中点,
∵M为BG中点,且,
∴CH垂直平分BG,
∴CG=CB.
本题考查平行四边形的判定和性质,正方形的性质以及全等三角形的判定和性质,灵活应用全等三角形的性质是解题关键.
25、(1);(2);(3)米.
【解析】
(1)根据表中的数据写出函数关系式;
(2)把相关数据代入函数关系式求解即可;
(3)把相关数据代入函数关系式求解即可.
【详解】
(1)由表格数据可知,每升高1千米,气温下降6,可得与和函数关系式为:
(2)
(3)
本题主要考查了函数关系式及函数值,解题的关键是根据表中的数据写出函数关系式.
26、4
【解析】
试题分析:先求出方程的两个根,再利用新定义的运算法则计算,计算时需要分类讨论.
试题解析:
x1-7x+11=0,(x-4)(x-3)=0,
x-4=0或x-3=0,∴x1=4,x1=3或x1=3,x1=4.
当x1=4,x1=3时,x1*x1=41-4×3=4,
当x1=3,x1=4时,x1*x1=3×4-41=-4,∴x1*x1的值为4或-4.
点睛:定义新运算是一种人为的、临时性的运算形式,是可以深刻理解数学本源的题型,它使用的是一些特殊的运算符号,如:*、△、⊙,等,解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算.
题号
一
二
三
四
五
总分
得分
距离地面高度
0
1
2
3
4
5
气温
20
14
8
2
﹣4
﹣10
相关试卷
这是一份黑龙江省大庆市名校2025届数学九年级第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届黑龙江省鸡西市虎林市八五八农场学校九年级数学第一学期开学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年云南省普洱市名校数学九年级第一学期开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。