年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    湖北省恩施州2024年九年级数学第一学期开学监测模拟试题【含答案】

    湖北省恩施州2024年九年级数学第一学期开学监测模拟试题【含答案】第1页
    湖北省恩施州2024年九年级数学第一学期开学监测模拟试题【含答案】第2页
    湖北省恩施州2024年九年级数学第一学期开学监测模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省恩施州2024年九年级数学第一学期开学监测模拟试题【含答案】

    展开

    这是一份湖北省恩施州2024年九年级数学第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在△ABC中,已知∠A、∠B、∠C的度数之比是1:1:2,BC=4,△ABC的面积为( )
    A.2B.C.4D.8
    2、(4分)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )
    A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
    C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %
    3、(4分)如图,在平面直角坐示系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的横坐标分別为1,2,反比例函数的图像经过A,B两点,则菱形ABCD的边长为( )
    A.1B.C.2D.
    4、(4分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为( )
    A.B.
    C.D.
    5、(4分)下列曲线中不能表示y与x的函数的是( )
    A.B.C.D.
    6、(4分)如图,已知反比例函数和一次函数的图象相交于点、两点,则不等式的解集为( )
    A.或B.
    C.D.或
    7、(4分)若分式方程有增根,则m等于( )
    A.-3B.-2C.3D.2
    8、(4分)甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是( )
    A.从甲袋摸到黑球的概率较大
    B.从乙袋摸到黑球的概率较大
    C.从甲、乙两袋摸到黑球的概率相等
    D.无法比较从甲、乙两袋摸到黑球的概率
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图 是中国在奥运会中获奖牌扇形统计图,由图可知,金牌数占奖牌总数的百分 率是_____,图中表示金牌百分率的扇形的圆心角度数约是____________.(精确到 1°)
    10、(4分)已知一组数据:0,2,x,4,5,这组数据的众数是 4,那么这组数据的平均数是_____.
    11、(4分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为 1m,那么它的下部应设计的高度为_____.
    12、(4分)如图,在矩形 中,,,那么 的度数为_____________.
    13、(4分)一元二次方程化成一般式为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)甲乙两车分别从A.B两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S(千米)与甲车出发时间t(小时)之间的函数图象,其中D点表示甲车到达B地,停止行驶。
    (1)A、B两地的距离___千米;乙车速度是___;a=___.
    (2)乙出发多长时间后两车相距330千米?
    15、(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E、F分别是OA、OC的中点.
    求证:BE=DF
    16、(8分)如图,四边形ABCD为正方形.在边AD上取一点E,连接BE,使∠AEB=60°.
    (1)利用尺规作图(保留作图痕迹):分别以点B、C为圆心,BC长为半径作弧交正方形内部于点T,连接BT并延长交边AD于点E,则∠AEB=60°;
    (2)在前面的条件下,取BE中点M,过点M的直线分别交边AB、CD于点P、Q.
    ①当PQ⊥BE时,求证:BP=2AP;
    ②当PQ=BE时,延长BE,CD交于N点,猜想NQ与MQ的数量关系,并说明理由.
    17、(10分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练.王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的成绩,将两次测得的成绩制作成如图所示的统计图和不完整的统计表
    训练后学生成绩统计表
    根据以上信息回答下列问题
    (1)训练后学生成绩统计表中n= ,并补充完成下表:
    (2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?
    18、(10分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.
    求证:四边形ABCD为平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)当x=______时,分式的值是1.
    20、(4分) “两直线平行,内错角相等”的逆命题是__________.
    21、(4分)某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占,语言表达成绩占,写作能力成绩占,则李丽最终的成绩是______分.
    22、(4分)若不等式组的解集是,则m的值是________.
    23、(4分)如果不等式组 的解集是,那么的取值范围是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)计算:
    (1);
    (2).
    25、(10分)某中学形展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
    (1)根据图示填写下表:
    (2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
    (3)计算两班复赛成绩的方差.
    26、(12分)某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.
    (1)当x≥200时,求y与x之间的函数关系式
    (2)若小刚家10月份上网180小时,则他家应付多少元上网费?
    (3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据比例设∠A=k,∠B=k,∠C=2k,然后根据三角形的内角和等于180°列方程求出k的值,从而得到三个内角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半求出AB,利用勾股定理列式求出AC,然后根据三角形的面积公式列式计算即可得解.
    【详解】
    解:设∠A=k,∠B=k,∠C=2k,
    由三角形的内角和定理得,k+k+2k=180°,
    解得k=45°,
    所以,∠A=45°,∠B=45°,∠C=90°,
    ∴AC=BC=4,,
    所以,△ABC的面积=.
    故选:D.
    本题考查的知识点是直角三角形的性质和三角形的内角和定理,解题关键是利用“设k法”求解三个内角的度数.
    2、C
    【解析】
    【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.
    【详解】观察直方图,由图可知:
    A. 最喜欢足球的人数最多,故A选项错误;
    B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;
    C. 全班共有12+20+8+4+6=50名学生,故C选项正确;
    D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,
    故选C.
    【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.
    3、B
    【解析】
    过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为1,2,可得出纵坐标,即可求得AE,BE,再根据勾股定理得出答案.
    【详解】
    解:过点A作x轴的垂线,与CB的延长线交于点E,
    ∵A,B两点在反比例函数的图象上且横坐标分别为1,2,
    ∴A,B纵坐标分别为2,1,
    ∴AE=1,BE=1,
    ∴AB= = .
    故选B.
    本题考查菱形的性质以及反比例函数图象上点的坐标特征,熟练掌握菱形的性质以及反比例函数图象上点的坐标特征是解题的关键.
    4、A
    【解析】
    根据配方法的步骤逐项分析即可.
    【详解】
    ∵x2+px+q=0,
    ∴x2+px=-q,
    ∴x2+px+=-q+,
    ∴.
    故选A.
    本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.
    5、C
    【解析】
    函数是在一个变化过程中有两个变量x,y,一个x只能对应唯一一个y.
    【详解】
    当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.
    选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x的值对应,因而不是函数关系.
    函数图像的判断题,只需过每个自变量在x轴对应的点,作垂直x轴的直线观察与图像的交点,有且只有一个交点则为函数图象。
    6、D
    【解析】
    分析两个函数以交点为界,观察交点每一侧的图像可以得到结论.
    【详解】
    解:观察图像得:的解集是:或.
    故选D.
    本题考查的是利用图像直接写不等式的解集问题,理解图像反映出来的函数值的变化对应的自变量的变化是解题关键.
    7、B
    【解析】
    先去掉分母,再将增根x=1代入即可求出m的值.
    【详解】
    解,去分母得x-3=m
    把增根x=1代入得m=1-3=-2
    故选B.
    此题主要考查分式方程的求解,解题的关键是熟知增根的含义.
    8、B
    【解析】
    试题分析:根据概率的计算法则可得:甲袋P(摸到黑球)=;乙袋P(摸到黑球)=.根据可得:从乙袋摸到黑球的概率较大.
    考点:概率的计算
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、51%; 184°.
    【解析】
    先利用1-28-21得出金牌数占奖牌总数的百分比,然后用360°去乘这个百分比即可.
    【详解】
    解:1-28%-21%=51%
    360°×51%=183.6°184°
    故答案为:51%;184°
    考查扇形统计图的制作方法,明确扇形统计图的特点,是解决问题的关键.
    10、3
    【解析】
    先根据众数的定义求出的值,再根据平均数的计算公式列式计算即可.
    【详解】
    解:,2,,4,5的众数是4,

    这组数据的平均数是;
    故答案为:3;
    此题考查了众数和平均数,根据众数的定义求出的值是本题的关键,众数是一组数据中出现次数最多的数.
    11、
    【解析】
    设雕像的下部高为x m,则上部长为(1-x)m,然后根据题意列出方程求解即可.
    【详解】
    解:设雕像的下部高为x m,则题意得:,
    整理得:,
    解得: 或 (舍去);
    ∴它的下部应设计的高度为.
    故答案为:.
    本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.
    12、30°.
    【解析】
    由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.
    【详解】
    解:如图所示:
    ∵四边形ABCD是矩形,
    ∴∠ADC=90°,OA=AC,OD=BD,AC=BD,
    ∴OA=OD,
    ∴∠ODA=∠DAE,
    ∵∠ADE=∠CDE,
    ∴∠ADE=×90°=30°,
    ∵DE⊥AC,
    ∴∠AED=90°,
    ∴∠DAE=60°,
    ∴∠ODA=60°,
    ∴∠BDC=90°-60°=30°;
    故答案为30°.
    本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
    13、
    【解析】
    直接去括号,然后移项,即可得到答案.
    【详解】
    解:∵,
    ∴,
    ∴,
    故答案为:.
    本题考查了一元二次方程的一般式,解题的关键是熟练掌握一元二次方程的一般式.
    三、解答题(本大题共5个小题,共48分)
    14、(1)560千米;100;;(2)乙出发0.5小时或3.5小时后两车相距330千米.
    【解析】
    (1)根据图象,甲出发时的S值即为A、B两地间的距离;先求出甲车的速度,然后设乙车的速度为xkm/h,再利用相遇问题列出方程求解即可;然后求出相遇后甲车到达B地的时间,再根据路程=速度×时间求出两车的相距距离a即可;
    (2)设直线BC的解析式为S=kt+b(k≠0),利用待定系数法求出直线BC的解析式,再令S=330,求出t的值,减去1即为相遇前乙车出发的时间;设直线CD的解析式为S=k t+b(k≠0),利用待定系数法求出直线CD的解析式,再令S=330,求出t的值,减去1即为相遇后乙车出发的时间.
    【详解】
    (1)t=0时,S=560,
    所以,A. B两地的距离为560千米;
    甲车的速度为:(560−440)÷1=120km/h,
    设乙车的速度为xkm/h,
    则(120+x)×(3−1)=440,
    解得x=100;
    相遇后甲车到达B地的时间为:(3−1)×100÷120= 小时,
    所以,a=(120+100)× 千米;
    (2)设直线BC的解析式为S=k t+b (k≠0),
    将B(1,440),C(3,0)代入得,

    解得 ,
    所以,S=−220t+660,
    当−220t+660=330时,解得t=1.5,
    所以,t−1=1.5−1=0.5;
    直线CD的解析式为S=k t+b (k≠0),
    点D的横坐标为 ,
    将C(3,0),D( )代入得,

    解得 ,
    所以,S=220t−660(3⩽t⩽ )
    当220t−660=330时,解得t=4.5,
    所以,t−1=4.5−1=3.5,
    答:乙出发0.5小时或3.5小时后两车相距330千米.
    此题考查一次函数的应用,解题关键在于结合函数图象进行解答.
    15、详见解析
    【解析】
    根据题意可得BO=DO,再由E、F是AO、CO的中点可得EO=FO,即可证全等求出BE=DF.
    【详解】
    ∵ABCD是平行四边形,
    ∴BO=DO,AO=CO,
    ∵E、F分别是OA、OC的中点,
    ∴EO=FO,
    又∵∠COD=∠BOE,
    ∴△BOE≌△DOF(SAS),
    ∴BE=DF.
    本题考查三角形全等,关键在于由平行四边形的性质得出有用的条件,再根据图形判断全等所需要的条件.
    16、 (1)见解析;(2)①见解析;②NQ=2MQ或NQ=MQ.理由见解析
    【解析】
    (1)分别以点B、C为圆心,BC长为半径作弧交正方形内部于点T,连接BT并延长交边AD于点E;
    (2)①连接PE,先证明PQ垂直平分BE.得到PB=PE,再证明∠APE=60°,得到∠AEP=30°,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答;
    ②NQ=2MQ或NQ=MQ,分两种情况讨论,作出辅助线,证明△ABE≌△FQP,即可解答.
    【详解】
    (1)解:如图1,
    分别以点B、C为圆心,BC长为半径作弧交正方形内部于点T,连接BT并延长交边AD于点E;
    (2)①证明:连接PE,如图2,
    ∵点M是BE的中点,PQ⊥BE,
    ∴PQ垂直平分BE.
    ∴PB=PE,
    ∴∠PEB=∠PBE=90°﹣∠AEB=90°﹣60°=30°,
    ∴∠APE=∠PBE+∠PEB=60°,
    ∴∠AEP=90°∠APE=90°﹣60°=30°,
    ∴BP=EP=2AP.
    ②NQ=2MQ或NQ=MQ.理由如下:
    分两种情况:
    如图3所示,过点Q作QF⊥AB于点F交BC于点G,则FQ=CB.
    ∵正方形ABCD中,AB=BC,
    ∴FQ=AB.
    在Rt△ABE和Rt△FQP中,,
    ∴Rt△ABE≌Rt△FQP(HL).
    ∴∠FQP=∠ABE=30°.
    又∵∠MGQ=∠AEB=60°,
    ∴∠GMQ=90°,
    ∵CD∥AB.
    ∴∠N=∠ABE=30°.
    ∴NQ=2MQ,
    如图4所示,
    过点Q作QF⊥AB于点F交BC于点G,则QF=CB.
    同理可证:△ABE≌△FQP.
    此时∠FPQ=∠AEB=60°.
    又∵∠FPQ=∠ABE+∠PMB,∠N=∠ABE=30°.
    ∴∠EMQ=∠PMB=30°.
    ∴∠N=∠EMQ,
    ∴NQ=MQ.
    本题是四边形综合题目,考查了正方形的性质、全等三角形的性质与判定、尺规作图、含30°角的直角三角形的性质、线段垂直平分线的性质、等腰三角形的性质等知识;本题综合性强,解决本题的关键是作出辅助线,证明三角形全等.
    17、(1)3;7.5;8.3;8;(2)估计该校九年级学生训练后比训练前达到优秀的人数增加了125人
    【解析】
    (1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;
    (2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;
    【详解】
    (1)n=20-1-3-8-5=3;
    强化训练前的中位数为=7.5;
    强化训练后的平均分为(1×6+3×7+8×8+9×5+10×3)=8.3;
    强化训练后的众数为8,
    故答案为3;7.5;8.3;8;
    (2)500×(-)=125,
    所以估计该校九年级学生训练后比训练前达到优秀的人数增加了125人.
    本题考查读条形统计图图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    18、证明见解析.
    【解析】
    试题分析:首先证明△AEB≌△CFD可得AB=CD,再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.
    试题解析:∵AB∥CD,
    ∴∠DCA=∠BAC,
    ∵DF∥BE,
    ∴∠DFA=∠BEC,
    ∴∠AEB=∠DFC,
    在△AEB和△CFD中

    ∴△AEB≌△CFD(ASA),
    ∴AB=CD,
    ∵AB∥CD,
    ∴四边形ABCD为平行四边形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    直接利用分式的值为零则分子为零进而得出答案.
    【详解】
    ∵分式的值是1,
    ∴x=1.
    故答案为:1.
    此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键.
    20、内错角相等,两直线平行
    【解析】
    解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.
    21、78
    【解析】
    直接利用加权平均数的求法进而得出答案.
    【详解】
    由题意可得:70×50%+90×30%+80×20%=78(分).
    故答案为:78
    此题考查加权平均数,解题关键在于掌握运算法则
    22、2
    【解析】
    分别求出每个不等式的解集,取共同部分,即可得到m的值.
    【详解】
    解:,解得:,
    ∵不等式组的解集为:,
    ∴;
    故答案为:2.
    本题考查了由不等式组的解集求参数,解题的关键是根据不等式组的解集求参数.
    23、.
    【解析】
    先用含有m的代数式把原不等式组的解集表示出来,然后和已知的解集比对,得到关于m的不等式,从而解答即可.
    【详解】
    在中,
    由(1)得,,
    由(2)得,,
    根据已知条件,不等式组解集是.
    根据“同大取大”原则.
    故答案为:.
    本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.
    二、解答题(本大题共3个小题,共30分)
    24、(1)5;(2)6+2
    【解析】
    (1)先把各二次根式化为最简二次根式,然后合并即可;
    (2)利用完全平方公式和平方差公式计算.
    【详解】
    解:(1)原式=2+4-
    =5;
    (2)原式=2+2+3-(2-3)
    =5+2+1
    =6+2.
    本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.利用乘法公式计算是解决(2)小题的关键.
    25、(1)九(1)的平均数为85,众数为85,九(2)班的中位数是80;(2)九(1)班成绩好些,分析见解析;(3)=70,=100
    【解析】
    (1)先根据条形统计图得出每个班5名选手的复赛成绩,然后平均数按照公式 ,中位数和众数按照概念即可得出答案;
    (2)对比平均数和中位数,平均数和中位数大的成绩较好;
    (3)按照方差的计算公式计算即可.
    【详解】
    解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,
    九(2)班5名选手的复赛成绩为:70、100、100、75、80,
    ∴九(1)的平均数为(75+80+85+85+100)÷5=85,
    九(1)的众数为85,
    把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,
    ∴九(2)班的中位数是80;
    (2)九(1)班成绩好些.因为两个班平均分相同,但九(1)班的中位数高,所以九(1)班成绩好些.
    (3)==70
    ==100
    本题主要考查数据的统计与分析,掌握平均数,中位数,众数和方差是解题的关键.
    26、(1)y=x-260;(2)小刚家10月份上网180小时应交费40元;(3)他家该月的上网时间是208小时.
    【解析】
    (1)用待定系数法求解;(2)根据函数图象求解;(3)(把y=52代入y=x-260中可得.
    【详解】
    (1)设当x≥200时,y与x之间的函数关系式为y=kx+b,
    ∵图象经过(200,40)(220,70),
    ∴,解得,
    ∴此时函数表达式为y=x-260;
    (2)根据图象可得小刚家10月份上网180小时应交费40元;
    (3)把y=52代入y=x-260中得:x=208,
    答:他家该月的上网时间是208小时.
    考核知识点:一次函数的应用.数形结合分析问题是关键.
    题号





    总分
    得分
    成绩/分数
    6分
    7分
    8分
    9分
    10分
    人数/人
    1
    3
    8
    5
    n
    平均分
    中位数
    众数
    训练前
    7.5
    8
    训练后
    8
    班级
    平均数(分)
    中位数(分)
    众数(分)
    九(1)
    85
    九(2)
    85
    100

    相关试卷

    湖北省丹江口市2024年九年级数学第一学期开学监测模拟试题【含答案】:

    这是一份湖北省丹江口市2024年九年级数学第一学期开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】:

    这是一份2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省恩施州名校数学九年级第一学期开学质量检测试题【含答案】:

    这是一份2024年湖北省恩施州名校数学九年级第一学期开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map