湖北省恩施州宣恩县2024年九上数学开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )
A.x>1B.x≥1C.x>3D.x≥3
2、(4分)图中的两个三角形是位似图形,它们的位似中心是( )
A.点PB.点D
C.点MD.点N
3、(4分)函数y=5x﹣3的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)如果a>b,下列各式中正确的是( )
A.ac>bcB.a﹣3>b﹣3C.﹣2a>﹣2bD.
5、(4分)如图,四边形为平行四边形,延长到点,使,连接,,.添加一个条件,不能使四边形成为矩形的是( )
A.B.C.D.
6、(4分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是( )
A.12B.14C.16D.18
7、(4分)函数y=中,自变量x的取值范围是( )
A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0
8、(4分)将一张矩形纸片沿一组对边和的中点连线对折,对折后所得矩形恰好与原矩形相似,若原矩形纸片的边,则的长为( )
A.B.C.D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当x___________时,是二次根式.
10、(4分)方程在实数范围内的解是_____.
11、(4分)体育张教师为了解本校八年级女生:“1分钟仰卧起坐”的达标情况,随机抽取了20名女生进行仰卧起坐测试.如图是根据测试结果绘制的频数分布直方图.如果这组数据的中位数是40次,那么仰卧起坐次数为40次的女生人数至少有__________人.
12、(4分)化简b 0 _______.
13、(4分)已知的顶点坐标分别是,,.过点的直线与相交于点.若分的面积比为,则点的坐标为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算
(1)
(2).
15、(8分)某县为了了解2018年初中毕业生毕业后的去向,对部分九年级学生进行了抽样调查,就九年级学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他)进行数据统计,并绘制了两幅不完整的统计图(如图①②)请问:
(1)本次共调查了_ 名初中毕业生;
(2)请计算出本次抽样调查中,读职业高中的人数和所占百分比,并将两幅统计图中不完整的部分补充完整;
(3)若该县2018年九年级毕业生共有人,请估计该县今年九年级毕业生读职业高中的学生人数.
16、(8分)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=3,AD=4,∠A=60°,求CE的长.
17、(10分)(1)因式分解:x2y﹣2xy2+y3
(2)解不等式组:
18、(10分)如图,四边形是正方形,点是边上的一点,,且交正方形外角的平分线于点.
(1)如图1,当点是的中点时,猜测与的关系,并说明理由.
(2)如图2,当点是边上任意一点时,(1)中所猜测的与的关系还成立吗?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某公司招聘员工一名,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如下表所示:
若公司将面试成绩、笔试成绩分别赋予6和4的权,则被录取的人是__________.
20、(4分)若关于的分式方程有增根,则的值为__________.
21、(4分)如图,的面积为36,边cm,矩形DEFG的顶点D、G分别在AB、AC上,EF在BC上,若,则______cm.
22、(4分)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为_____.
23、(4分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是___.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,▱ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.
(1)求证:四边形BFDE是平行四边形;
(2)若∠AEB=68°,求∠C.
25、(10分)我市从 2018 年 1 月 1 日开始,禁止燃油助力车上路,于是电动自 行车的市场需求量日渐增多.某商店计划最多投入 8 万元购进 A、B 两种型号的 电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样.
(1)求 A、B 两种型号电动自行车的进货单价;
(2)若 A 型电动自行车每辆售价为 2800 元,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售 后可获利润 y 元.写出 y 与 m 之间的函数关系式;
(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.
26、(12分)已知向量,(如图),请用向量的加法的平行四边形法则作向量(不写作法,画出图形)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,
则该不等式组的解集是x>1.
故选C.
考点:在数轴上表示不等式的解集.
2、A
【解析】
试题分析:根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.
解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,
因为点P在直线MN上,
所以点P为位似中心.
故选A.
考点:位似变换.
3、B
【解析】
根据一次函数图像与k,b的关系得出结论.
【详解】
解:因为解析式y=5x﹣3中,k=5>0,图象过一、三象限,b=﹣3<0,图象过一、三、四象限,故图象不经过第二象限,故选B.
考查了一次函数图像的性质,熟练掌握一次函数图像与k,b的关系是解决本题的关键,也可以列表格画出图像判断.
4、B
【解析】
根据不等式的性质对各选项分析判断即可得解.
【详解】
解:A、a>b不等式两边都乘以c,c的正负情况不确定,所以ac>bc不一定成立,故本选项错误;
B、a>b不等式的两边都减去3可得a-3>b-3,故本选项正确;
C、a>b不等式的两边都乘以-2可得-2a<-2b,故本选项错误;
D、a>b不等式两边都除以2可得,故本选项错误.
故选:B.
本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
5、C
【解析】
先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;
B、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;
C、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;
D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.
故选:C.
本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形BCDE为平行四边形是解题的关键.
6、B
【解析】
延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.
【详解】
延长BN交AC于D,
在△ANB和△AND中,
,
∴△ANB≌△AND,
∴AD=AB=8,BN=ND,
∵M是△ABC的边BC的中点,
∴DC=2MN=6,
∴AC=AD+CD=14,
故选B.
本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.
7、B
【解析】
试题分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.
解:由题意得,x﹣1≥0且x≠0,
∴x≥1.
故选:B.
8、C
【解析】
根据相似多边形对应边的比相等,设出原来矩形的长,就可得到一个方程,解方程即可求得.
【详解】
解:根据条件可知:矩形AEFB∽矩形ABCD,
∴,
设AD=BC=x,AB=1,则AE=x.则,即:x2=1.
∴x=或﹣(舍去).
故选:C.
本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、≤;
【解析】
因为二次根式满足的条件是:含二次根号,被开方数大于或等于0,利用二次根式满足的条件进行求解.
【详解】
因为是二次根式,
所以,
所以,
故答案为.
本题主要考查二次根式的定义,解决本题的关键是要熟练掌握二次根式的定义.
10、
【解析】
由x3+8=0,得x3=-8,所以x=-1.
【详解】
由x3+8=0,得
x3=-8,
x=-1,
故答案为:x=-1.
本题考查了立方根,正确理解立方根的意义是解题的关键.
11、1
【解析】
根据中位数的定义求解可得.
【详解】
解:∵这20个数据的中位数是第10、11个数据的平均数,且第10个、11个全部位于第三组(40≤x<10)内,
∴第10个、11个数据均为40,
∵小于40的有6个,
∴第7、8、9、10、11个数据一定为40,
∴仰卧起坐次数为40次的女生人数至少有1人,
故答案为:1.
本题主要考查频数分布直方图和中位数,解题的关键是掌握中位数的概念.
12、
【解析】
式子的分子和分母都乘以 即可得出 ,根据b是负数去掉绝对值符号即可.
【详解】
∵b<0,
∴=.
故答案为: .
此题考查分母有理化,解题关键在于掌握运算法则
13、(5,-)或(5,-).
【解析】
由AE分△ABC的面积比为1:2,可得出BE:CE=1:2或BE:CE=2:1,由点B,C的坐标可得出线段BC的长度,再由BE:CE=1:2或BE:CE=2:1结合点B的坐标可得出点E的坐标,此题得解.
【详解】
∵AE分△ABC的面积比为1:2,点E在线段BC上,
∴BE:CE=1:2或BE:CE=2:1.
∵B(5,1),C(5,-6),
∴BC=1-(-6)=2.
当BE:CE=1:2时,点E的坐标为(5,1-×2),即(5,-);
当BE:CE=2:1时,点E的坐标为(5,1-×2),即(5,-).
故答案为:(5,-)或(5,-).
本题考查了比例的性质以及三角形的面积,由三角形的面积比找出BE:CE的比值是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、4+;6+
【解析】
(1)先根据二次根式的乘除法则运算,然后合并即可;
(2)先把各二次根式化为最简二次根式,然后合并即可.
【详解】
解:(1)原式=﹣+2=4﹣+2=4+;
(2)原式=5﹣+﹣1=4+.
考点:二次根式的混合运算
15、(1)100;(2)25%,画图见解析;(3)2500人.
【解析】
(1)用类别A的人数除以类别A所占的百分比即可求出总数,
(2)先求出类别B所占的百分比,然后用总数乘以类别为B的人数所占的百分比求得类别B的人数,再画图即可,
(3)用该县2018年初三毕业生总数乘以读普通高中的学生所占的百分比即可.
【详解】
解:(1)本次共调查了60÷60%=100名初中毕业生;
故答案为:100;
(2)类别为B的百分比为:1-60%-10%-5%=25%
类别B的人数是100×25%=25(人),
画图如下:
(3)10000×25%=2500人
∴该县今年九年级毕业生读职业高中的学生人数为2500人.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
16、 (1)证明见解析;(2)CE=.
【解析】
(1)利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,进而得出答案;
(2)首先过点D作DN⊥BC于点N,再利用平行四边形的性质结合勾股定理得出DF的长,进而得出答案.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵DE=AD,F是BC边的中点,
∴DE=FC,DE∥FC,
∴四边形CEDF是平行四边形;
(2)过点D作DN⊥BC于点N,
∵四边形ABCD是平行四边形,∠A=60°,
∴∠BCD=∠A=60°,
∵AB=3,AD=4,
∴FC=2,NC=DC=,DN=,
∴FN=,则DF=EC==.
本题考查了平行四边形的判定与性质以及勾股定理等知识,熟练应用平行四边形的判定方法是解题关键.
17、(1)y(x﹣y)2;(2)﹣3<x<2
【解析】
(1)由题意对原式提取公因式,再利用完全平方公式分解即可;
(2)根据题意分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解:(1)原式=y(x2﹣2xy+y2)
=y(x﹣y)2;
(2),
由①得:x<2,
由②得:x>﹣3,
则不等式组的解集为:﹣3<x<2.
本题考查因式分解和解不等式组,熟练掌握提公因式法与公式法的综合运用以及解不等式组的方法是解答本题的关键.
18、(1);(2)成立,理由见解析.
【解析】
(1)取的中点,连接,根据同角的余角相等得到,然后易证,问题得解;
(2)在上取点,使,连接,同(1)的方法相同,证明即可;
【详解】
(1)证明:如图1,取的中点,连接,
四边形是正方形,
,,
,
,
,,
是正方形外角的平分线,
,
,,
,
在和中,
,
,
;
(2)如图2,在上取点,使,连接,
四边形是正方形,
,,
,
,
,,
是正方形外角的平分线,
,
,,
,
在和中,
,
,
;
此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确运用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、乙.
【解析】
根据加权平均数的计算公式进行计算即可.
【详解】
∵甲的面试成绩为86分,笔试成绩为90分,面试成绩和笔试成绩6和4的权,
∴甲的平均成绩的是(分).
∵乙的面试成绩为92分,笔试成绩为83分,面试成绩和笔试成绩6和4的权,
∴乙的平均成绩的是(分).
∵
∴被录取的人是乙
故答案为:乙.
此题考查了加权平均数的计算公式,解题的关键是计算平均数时按6和4的权进行计算.
20、
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x-1)(x+1)=0,得到x=1或-1,然后代入化为整式方程的方程,满足即可.
【详解】
方程两边都乘(x-5),
得1-a=x-5,
∴x=7-a
∵原方程有增根,
∴最简公分母x-5=0,
解得x=5,
∴7-a=5;
∴a=1.
故答案为:1.
本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:
①让最简公分母为0确定可能的增根;
②化分式方程为整式方程;
③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.
21、6
【解析】
作AH⊥BC于H点,可得△ADG∽△ABC,△BDE∽△BAH,根据相似三角形对应边比例等于相似比可解题.
【详解】
解:作AH⊥BC于H点,
∵四边形DEFG为矩形,
∴△ADG∽△ABC,△BDE∽△BAH,
∵的面积为36,边cm
∴AH=6
∵EF=2DE,即DG=2DE
解得:DE=3
∴DG=6
故答案为:6
本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.
22、1
【解析】
根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.
【详解】
在Rt△ABC中,∠A=30°,BC=1,
∴AB=2BC=2,
∵点D,E分别是直角边BC,AC的中点,
∴DE=AB=1,
故答案为:1.
本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
23、1.
【解析】
根据众数的定义来判断即可,众数:一组数据中出现次数最多的数据叫做众数.
【详解】
解:数据1出现了3次,次数最多,所以这组数据的众数是1.
故答案为:1.
众数的定义是本题的考点,属于基础题型,熟练掌握众数的定义是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)∠C=44°.
【解析】
(1)由平行四边形的性质及角平分线的性质可得AB=AE,CF=CD,进而可得四边形EBFD是平行四边形,即可得出结论;
(2)根据平行线的性质和角平分线的定义即可得到结论.
【详解】
(1)证明:在平行四边形ABCD中,AD∥BC,
∴∠AEB=∠CBE,
又BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,即AB=AE,
同理CF=CD,
又AB=CD,∴CF=AE,
∴BF=DE,
∴四边形EBFD是平行四边形;
(2)解:∵∠AEB=68°,AD∥BC,
∴∠EBF=∠AEB=68°,
∵BE平分∠ABC,
∴∠ABC=2∠EBF=136°,
∴∠C=180°-∠ABC=44°.
故答案为:(1)见解析;(2)∠C=44°.
本题考查平行四边形的性质及角平分线的性质问题,要熟练掌握,并能够求解一些简单的计算、证明问题.
25、(1)A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20 时,y 有最大值,最大值为 11000 元.
【解析】
(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500)元,根据用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样,列分式方程即可解决问题;
(2)根据总利润=A 型的利润+B 型的利润,列出函数关系式即可;
(3)利用一次函数的性质即可解决问题.
【详解】
解:(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500) 元,
由题意:=,
解得:x=2500,
经检验:x=2500 是分式方程的解,
答:A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;
(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);
(3)∵y=300m+500(30﹣m)=﹣200m+15000,
∵﹣200<0,20≤m≤30,
∴m=20 时,y 有最大值,最大值为 11000 元.
本题考查了分式方程的应用,一次函数的应用等知识,读懂题意,找准等量关系列出方程,找准数量关系列出函数关系是解题的关键.
26、见解析.
【解析】
利用向量的加法的平行四边形法则即可解决问题.
【详解】
如图:
即为所求.
本题考查作图-复杂作图,平面向量等知识,解题的关键是熟练掌握向量的加法的平行四边形法则,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
批阅人
应试者
面试
笔试
甲
86
90
乙
92
83
温度/℃
22
24
26
29
天数
2
1
3
1
2025届湖北省黄冈市黄冈中学九上数学开学复习检测模拟试题【含答案】: 这是一份2025届湖北省黄冈市黄冈中学九上数学开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省黄石大冶市数学九上开学复习检测模拟试题【含答案】: 这是一份2024年湖北省黄石大冶市数学九上开学复习检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】: 这是一份2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。