湖北省黄冈浠水县联考2024年九上数学开学检测模拟试题【含答案】
展开
这是一份湖北省黄冈浠水县联考2024年九上数学开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为( )
A.B.C.D.12
2、(4分)下面哪个点在函数y=2x+4的图象上( )
A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)
3、(4分)某工厂计划用两年时间使产值增加到目前的4倍,并且使第二年增长的百分数是第一年增长百分数的2倍,设第一年增长的百分数为x,则可列方程得( )
A.(1+x)2=4B.x(1+2x+4x)=4
C.2x(1+x)=4D.(1+x)(1+2x)=4
4、(4分)下列标志既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
5、(4分)要使二次根式有意义,则x的取值范围是( )
A..B..C..D..
6、(4分)如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是( )
A.52B.42C.76D.72
7、(4分)如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于( )
A.7B.8C.9D.10
8、(4分)下面的字母,一定不是轴对称图形的是( ).
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若不等式组无解,则的取值范围是_______.
10、(4分)如图,四边形是正方形,延长到,使,则__________°.
11、(4分)已知直线与平行且经过点,则的表达式是__________.
12、(4分)如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,则平行四边形ABCD的周长___________.
13、(4分)如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的值是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:
(1)9x2=(x﹣1)2
(2)x2﹣2x﹣=0
15、(8分)如图所示,已知:Rt△ABC中,∠ACB=90°.作∠BAC的平分线AM交BC于点D,在所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.
(1)试判断四边形AEDF的形状,并证明;
(2)若AB=10,BC=8,在折痕EF上有一动点P,求PC+PD的最小值.
16、(8分)已知三个实数x,y,z满足,求的值.
17、(10分)为传承中华优秀传统文化,某校团委组织了一次全校名学生参加的“汉字书写”大赛,为了解本次大赛的成绩,校团委随机抽取了其中名学生的成绩(成绩取整数,总分分)作为样本进行统计,制成如下不完整的统计图表:
根据所给信息,解答下列问题:
(1)_____,______;
(2)补全频数直方图;
(3)这名学生成绩的中位数会落在______分数段;
(4)若成绩在分以上(包括分)为“优”等,请你估计该校参加本次比赛的名学生中成绩为“优”等的有多少人。
18、(10分)某书店老板去图书批发市场购买某种图书,第一次用500元购书若干本,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用900元所购该书的数量比第一次的数量多了10本.
(1)求第一次购书每本多少元?
(2)如果这两次所购图书的售价相同,且全部售完后总利润不低于25%,那么每本图书的售价至少是多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,字母A所代表的正方形面积为____.
20、(4分)如图,已知在▱ABCD中,∠B=60°,AB=4,BC=8,则▱ABCD的面积=_____.
21、(4分)如图,已知一块直角三角板的直角顶点与原点重合,另两个顶点,的坐标分别为,,现将该三角板向右平移使点与点重合,得到,则点的对应点的坐标为__________.
22、(4分)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为_____.
23、(4分)某中学人数相等的甲乙两班学生参加了同一次数学测试,两班的平均分、方差分别为甲=82分,乙=82分,S甲2=245分,S乙2=90分,那么成绩较为整齐的是______班(填“甲”或“乙”)。
二、解答题(本大题共3个小题,共30分)
24、(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:(参考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
(2)请从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看, 的成绩好些;
②从平均数和中位数相结合看, 的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
25、(10分)如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB=S矩形OBCD,问:
(1)当点P在矩形的对角线OC上,求点P的坐标;
(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.
26、(12分)如图,在平行四边形ABCD中,DB=DA,∠ADB的平分线交AB于点F,交CB的延长线于点E,连接AE.
(1)求证:四边形AEBD是菱形;
(2)若DC=,EF:BF=3,求菱形AEBD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据正方形的边长以及七巧板的特点先求出七巧板各个图形的边长,继而即可求得六边形的周长.
【详解】
解:如图,七巧板各图形的边长如图所示,
则六边形EFGHMN的周长为:
2+2++2+2+2++2=10+4,
故选B.
本题考查了正方形的面积、七巧板、周长的定义等,七巧板由下面七块板组成(完整图案为一正方形):五块等腰直角三角形(两块小型小三角形,一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,熟知七巧板中各块中的边长之间的关系是解题的关键.
2、D
【解析】
将四个选项中的点分别代入解析式,成立者即为函数图象上的点.
【详解】
A、将(2,1)代入解析式y=2x+4得,2×2+4=8≠1,故本选项错误;
B、将(-2,1)代入解析式y=2x+4得,2×(-2)+4=0≠1,故本选项错误;
C、将(2,0)代入解析式y=2x+1得,2×2+4=8≠0,故本选项错误;
D、将(-2,0)代入解析式y=2x+1得,2×(-2)+4=0,故本选项正确;
故选D.
本题考查了一次函数图象上点的坐标特征,将点的坐标代入解析式,解析式成立者即为正确答案.
3、D
【解析】
设第一年增长的百分数为x,则第二年增长的百分数为2x,根据“计划用两年时间使产值增加到目前的1倍”列出方程即可.
【详解】
解:设第一年增长的百分数为x,则第二年增长的百分数为2x,
根据题意,得(1+x)(1+2x)=1.
故选:D.
此题主要考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
4、C
【解析】
A、不是轴对称图形,是中心对称图形,不符合题意;
B、是轴对称图形,不是中心对称图形,不符合题意;
C、是轴对称图形,也是中心对称图形,符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选C.
5、C
【解析】
根据二次根式的性质,被开方数大于等于0,列不等式求解.
【详解】
解:根据题意得:x-3≥0,
解得,.
故选:C.
本题考查二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
6、C
【解析】
解:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得:x=1.故“数学风车”的周长是:(1+6)×4=2.故选C.
7、B
【解析】
先利用中点的定义求得AC的长,然后运用勾股定理即可快速作答.
【详解】
解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
∴DE=AC=5,
∴AC=1.
在直角△ACD中,∠ADC=90°,AD=6,AC=1,则根据勾股定理,得
CD==8
故答案为B;
考查勾股定理时,条件常常不是完全具备,需要挖掘隐含条件,才能正确的使用勾股定理.本题还考查了直角三角形斜边上的中线长度等于斜边的一半.
8、D
【解析】
根据轴对称图形的概念求解.
【详解】
A、是轴对称图形,故此选项错误;
B、是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项错误;
D、不是轴对称图形,故此选项正确.
故选:D.
考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先求出两个不等式的解集,再求其公共解,然后根据大大小小找不到(无解)列出关于a的不等式求解即可.
【详解】
由①得,x>2,
由②得,x<3-a,
∵不等式组的无解,
∴3-a≤2,
∴a≥1.
故答案为:a≥1.
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
10、22.5
【解析】
根据正方形的性质求出∠CAB=∠ACB=45°,再根据AC=AE求出∠ACE=67.5°,由此即可求出答案.
【详解】
∵四边形ABCD是正方形,
∴∠DAB=∠DCB=90°,
∵AC是对角线,
∴∠CAB=∠ACB=45°,
∵AC=AE,
∴∠ACE=67.5°,
∴∠BCE=∠ACE-∠ACB=22.5°,
故答案为:22.5°.
此题考查正方形的性质,等腰三角形的性质,三角形的内角和性质,是一道较为基础的题型.
11、
【解析】
先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b中求出b即可.
【详解】
∵直线y=kx+b与y=2x+1平行,
∴k=2,
把(1,3)代入y=2x+b得2+b=3,解得b=1,
∴y=kx+b的表达式是y=2x+1.
故答案为:y=2x+1.
此题考查一次函数中的直线位置关系,解题关键在于求k的值.
12、39
【解析】
根据角平分线和平行得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE,根据勾股定理求得BC=13cm,根据等腰三角形性质得到AB,CD,从而求得周长.
【详解】
在中,
∵,AB=CD
∴
∵BE、CE分别平分∠ABC、∠BCD
∴
∴ ,
∴
∵
∴
∵BE平分
∴
∴ ,
同理可得 ,
∴
∴的周长为:
故答案为: .
本题考查了等腰三角形和直角三角形的性质,解题的关键在于利用等腰三角形和直角三角形的性质求得平行四边形中一组对边的长度.
13、1
【解析】
过点D作DE⊥BC于E,根据角平分线的作法可知CD平分∠ACB,然后根据角平分线的性质可得DE=AD=3,然后根据三角形的面积公式求面积即可.
【详解】
解:过点D作DE⊥BC于E
由题意可知:CD平分∠ACB
∵
∴DE=AD=3
∵
∴=
故答案为:1.
此题考查的是用尺规作图作角平分线和角平分线的性质,掌握角平分线的作法和角平分线的性质是解决此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1),;(2),.
【解析】
(1)利用因式分解法即可解答
(2)先将分数化为整数,再利用判别式进行计算即可
【详解】
(1)
,
则,
故,
解得:,;
(2)
则,
△,
则,
解得:,.
此题考查解一元二次方程-因式分解法和判别式,掌握运算法则是解题关键
15、(1)见解析;(2)PC+PD的最小值为:1.
【解析】
(1)根据对称性,围绕证明对角线互相垂直平分找条件;
(2)求线段和最小的问题,P点的确定方法是:找D点关于直线EF的对称点A,再连接AC,AC与直线EF的交点即为所求.
【详解】
解:(1)四边形AEDF为菱形,
证明:由折叠可知,EF垂直平分AD于G点,
又∵AD平分∠BAC,
∴△AEG≌△AFG,
∴GE=GF,
∵EF垂直平分AD,
∴EF、AD互相垂直平分,
∴四边形AEDF为菱形(对角线互相垂直平分的四边形是菱形).
(2)已知D点关于直线EF的对称点为A,AC与EF的交点E即为所求的P点,
PC+PD的最小值为:CP+DP=CE+DE=CE+AE=AC= =1.
故答案为:(1)见解析;(2)PC+PD的最小值为:1.
本题考查折叠问题以及菱形的判定.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后线段相等.
16、4
【解析】
求得到,然后求出,分子分母同除以xyz得,即可求解。
【详解】
解:∵
∴
∴
分子分母同除以xyz得=4
本题考查了条件代数式求值问题,关键在于观察条件和所求代数式直接的联系;本题的联系在于倒数的应用和分式基本性质的应用。
17、 (1)70,0.05;(2)见解析;(3)80≤x
相关试卷
这是一份湖北省黄冈市浠水县2025届九上数学开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省黄冈市浠水县2024-2025学年九上数学开学统考试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省黄冈麻城市2024-2025学年数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。