湖北省荆州市南昕学校2024年九年级数学第一学期开学监测模拟试题【含答案】
展开
这是一份湖北省荆州市南昕学校2024年九年级数学第一学期开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,那么下列式子中一定成立的是 ( )
A.B.C.D.
2、(4分)正方形具有而菱形不一定具有的性质是( )
A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等
3、(4分)已知一次函数y=kx﹣1,若y随x的增大而减小,则它的图象经过( )
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
4、(4分)下列说法正确的是( )
A.为了解昆明市中学生的睡眠情况,应该采用普查的方式
B.数据2,1,0,3,4的平均数是3
C.一组数据1,5,3,2,3,4,8的众数是3
D.在连续5次数学周考测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定
5、(4分)将五个边长都为 2 的正方形按如图所示摆放,点 分别是四个正方形的中心,则图中四块阴影面积的和为( )
A.2B.4C.6D.8
6、(4分)分式为0的条件是( )
A.B.C.D.
7、(4分)下列方程中是一元二次方程的是( )
A.x2﹣1=0B.y=2x2+1C.x+ =0D.x2+y2=1
8、(4分)若,则下列各不等式不一定成立的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是 .
10、(4分)如图,在矩形ABCD中,E是AD的中点,且若矩形ABCD的周长为48cm,则矩形ABCD的面积为______.
11、(4分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若OF的长为,则△CEF的周长为______.
12、(4分)如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED=cm,则平行四边形ABCD的周长是_________.
13、(4分)如图,在ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为________ .
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简、再求值.,其中,.
15、(8分)已知直线 y=kx+b(k≠0)过点 F(0,1),与抛物线 相交于B、C 两点
(1)如图 1,当点 C 的横坐标为 1 时,求直线 BC 的解析式;
(2)在(1)的条件下,点 M 是直线 BC 上一动点,过点 M 作 y 轴的平行线,与抛物线交于点 D, 是否存在这样的点 M,使得以 M、D、O、F 为顶点的四边形为平行四边形?若存在,求出点 M 的坐标;若不存在,请说明理由;
(3)如图 2,设 B(m,n)(m<0),过点 E(0,-1)的直线 l∥x 轴,BR⊥l 于 R,CS⊥l 于 S,连接 FR、FS.试判断△ RFS 的形状,并说明理由.
16、(8分)为了贯彻落实区中小学“阅读·写字·演讲”三项工程工作,我区各校大力推广阅读活动,某校初二(1)班为了解2月份全班学生课外阅读的情况,调查了全班学生2月份读书的册数,并根据调查结果绘制了如下不完整的条形统计图和扇形统计图:
根据以上信息解决下列问题:
(1)参加本次问卷调查的学生共有______人,其中2月份读书2册的学生有______人;
(2)补全条形统计图,并求扇形统计图中读书3册所对应扇形的圆心角度数.
17、(10分)北京到济南的距离约为500km,一辆高铁和一辆特快列车都从北京去济南,高铁比特快列车晚出发3小时,最后两车同时到达济南,已知高铁的速度是特快列车速度的倍求高铁和特快列车的速度各是多少?列方程解答
18、(10分)如图,四边形和都是平行四边形.求证:四边形是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在Rt△ABC中,∠C=90°,若a=6,b=8,则c=________.
20、(4分)已知m是方程x2﹣2018x+1=0的一个根,则代数式m2﹣2017m++3的值等于_____.
21、(4分)若关于的分式方程的解是非负数,则的取值范围是__________.
22、(4分)数据1,3,5,6,3,5,3的众数是______.
23、(4分)分解因式: .
二、解答题(本大题共3个小题,共30分)
24、(8分)某校要设计一座高的雕像(如图),使雕像的点(肚脐)为线段(全身)的黄金分割点,上部(肚脐以上)与下部(肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到)米. (,结果精确到).
25、(10分)先化简,然后在0、±1、±2这5个数中选取一个作为x的值代入求值.
26、(12分)若b2﹣4ac≥0,计算:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据比例的性质对各个选项进行判断即可.
【详解】
A. ∵,∴3x=2y,∴ 不成立,故A不正确;
B. ∵,∴3x=2y,∴ 不成立,故B不正确;
C. ∵,∴y,∴ 不成立,故C不正确;
D. ∵,∴,∴ 成立,故D正确;
故选D.
本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键. 更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a,b,c,d,且有b≠0,d≠0,如果,则有.
2、B
【解析】
根据正方形的性质以及菱形的性质逐项进行分析即可得答案.
【详解】
菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;
正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),
A.菱形和正方形的对角线都互相垂直,故本选项错误;
B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;
C.菱形和正方形的对角线互相平分,故本选项错误;
D.菱形和正方形的对角都相等,故本选项错误,
故选B.
本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.
3、D
【解析】
先根据一次函数y=kx﹣1中,y随x的增大而减小判断出k的符号,再根据一次函数的性质判断出此函数的图象所经过的象限,进而可得出结论.
【详解】
解:∵一次函数y=kx﹣1中,y随x的增大而减小,
∴k<0,
∴此函数图象必过二、四象限;
∵b=﹣1<0,
∴此函数图象与y轴相交于负半轴,
∴此函数图象经过二、三、四象限.
故选:D.
本题主要考查一次函数的图象与性质,掌握一次函数的图象与性质是解题的关键.
4、C
【解析】
根据抽样调查、平均数、众数的定义及方差的意义解答可得.
【详解】
解:A、为了解昆明市中学生的睡眠情况,应该采用抽样调查的方式,此选项错误;
B、数据2,1,0,3,4的平均数是2,此选项错误;
C、一组数据1,5,3,2,3,4,8的众数是3,此选项正确;
D、在连续5次数学周考测试中,两名同学的平均分相同,方差较小的同学数学成绩更稳定,此选项错误;
故选C.
此题考查了抽样调查、平均数、众数和方差的定义.平均数是所有数据的和除以数据的个数.一组数据中出现次数最多的数据叫做众数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
5、B
【解析】
连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.
【详解】
解:如图,连接AP,AN,点A是正方形的对角线的交
则AP=AN,∠APF=∠ANE=45°,
∵∠PAF+∠FAN=∠FAN+∠NAE=90°,
∴∠PAF=∠NAE,
∴△PAF≌△NAE,
∴四边形AENF的面积等于△NAP的面积,
而△NAP的面积是正方形的面积的,而正方形的面积为4,
∴四边形AENF的面积为1cm1,四块阴影面积的和为4cm1.
故选B.
【点评】
本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.
6、C
【解析】
根据分式的分子等于0求出m即可.
【详解】
由题意得:2m-1=0,解得,此时,
故选:C.
此题考查依据分式值为零的条件求未知数的值,正确掌握分式值为零的条件:分子为零,分母不为零.
7、A
【解析】
解:A.x2﹣1=0是一元二次方程,故A正确;
B.y=2x2+1是二次函数,故B错误;
C.x+=0是分式方程,故C错误;
D.x2+y2=1中含有两个未知数,故D错误.
故选A.
8、D
【解析】
根据不等式的性质逐个判断即可.
【详解】
A、∵,
∴,故本选项不符合题意;
B、∵,
∴,故本选项不符合题意;
C、∵,
∴,故本选项不符合题意;
D、∵,
∴,故本选项符合题意;
故选:D.
本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、5
【解析】
解:∵这组数据的中位数和平均数相等,且2、3、4、x从小到大排列,
∴(3+4)=(2+3+4+x),
解得:x=5;
故答案为5
10、128
【解析】
根据AB=DC,∠A=∠D,AE=DE,利用SAS可判定△ABE≌△DCE,根据全等三角形的性质可得:∠AEB=∠DEC,再根据BE⊥CE,可得:∠BEC=90°,进而可得:∠AEB=∠DEC=45°,
因此∠EBC=∠ECD=45°,继而可得:AB=AE,DC=DE,即AD=2AB,根据周长=48,可求得:BC=16,AB=8,最后根据矩形面积公式计算可得:S=16×8=128 cm².
【详解】
∵AB=DC,∠A=∠D,AE=DE,
∴△ABE≌△DCE(SAS),
∴∠AEB=∠DEC,
∵BE⊥CE,
∴∠BEC=90°,
∵∠AEB+∠BEC+∠DEC=180°,
∴∠AEB=∠DEC=45°,
∴∠EBC=∠ECD=45°,
∴AB=AE,DC=DE,
即AD=2AB,
又∵周长=48,
∴BC=16,AB=8,
S=16×8=128 cm²,
故答案为:128.
本题主要考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解决本题的关键是要熟练掌握矩形性质,全等三角形,等腰直角三角形的判定和性质.
11、18
【解析】
是 的中位线, .
, .
由勾股定理得
.
是 的中线, .
∴△CEF的周长为6.5+6.5+5=18
12、15cm
【解析】
分析:由平行四边形ABCD得到AB=CD,AD=BC,AD∥BC,再和已知BE平分∠ABC,进一步推出∠ABE=∠AEB,即AB=AE=3,即可求出AD的长,就能求出答案.
详解:∵四边形ABCD是平行四边形,∴AB=CD=3cm,AD=BC,AD∥BC,∴∠AEB=∠EBC, ∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∴AD=AE+DE=3+=4.5,∴AD=BC=4.5,∴平行四边形的周长是2(AB+BC)=2(3+4.5)=15(cm).
故答案为:15cm.
点睛:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
13、
【解析】
先由平行四边形对边相等得AD=BC, 作DE⊥AE,由题意可知△ADE为等腰直角三角形,根据勾股定理可以求出DE的长度,即AB和CD之间的距离.
【详解】
如图,过D作DE⊥AB交AB于E,
∵四边形ABCD为平行四边形,∴AD=BC=2,
△ADE为等腰直角三角形,
,
根据勾股定理得 ,
,
,
,
即AB和CD之间的距离为,
故答案为:
本题考查了平行四边形的性质,勾股定理,熟练利用勾股定理求直角三角形中线段长是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、;
【解析】
根据二次根式混合运算的法则化简,再将x,y的值代入计算即可.
【详解】
解:
当,时
本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.
15、(1);(2)存在;M点坐标为:(-3,),,;(3)△RFS是直角三角形;证明见详解.
【解析】
(1)首先求出C的坐标,然后由C、F两点用待定系数法求解析式即可;
(2)因为DM∥OF,要使以M、D、O、F为顶点的四边形为平行四边形,则DM=OF,设M(x,),则D(x,x2),表示出DM,分类讨论列方程求解;
(3)根据勾股定理求出BR=BF,再由BR∥EF得到∠RFE=∠BFR,同理可得∠EFS=∠CFS,所以∠RFS=∠BFC=90°,所以△RFS是直角三角形.
【详解】
解:(1)因为点C在抛物线上,所以C(1,),
又∵直线BC过C、F两点,
故得方程组:
解之,得,
所以直线BC的解析式为:;
(2)存在;理由如下:
要使以M、D、O、F为顶点的四边形为平行四边形,则MD=OF,如图1所示,
设M(x,),则D(x,x2),
∵MD∥y轴,
∴,
由MD=OF,可得:;
①当时,
解得:x1=0(舍)或x1=-3,
所以M(-3,);
②当时,
解得:,
所以M或M,
综上所述,存在这样的点M,使以M、D、O、F为顶点的四边形为平行四边形,
M点坐标为:(-3,),,;
(3)△RFS是直角三角形;理由如下:
过点F作FT⊥BR于点T,如图2所示,
∵点B(m,n)在抛物线上,
∴m2=4n,
在Rt△BTF中,
,
∵n>0,
∴BF=n+1,
又∵BR=n+1,
∴BF=BR.
∴∠BRF=∠BFR,
又∵BR⊥l,EF⊥l,
∴BR∥EF,
∴∠BRF=∠RFE,
∴∠RFE=∠BFR,
同理可得∠EFS=∠CFS,
∴∠RFS=∠BFC=90°,
∴△RFS是直角三角形.
本题主要考查了待定系数法求解析式,平行四边形的判定,平行线的性质,勾股定理以及分类讨论和数形结合等数学思想.解题的关键是掌握待定系数法求解析式,以及学会运用分类讨论和数形结合等数学思想去解题.
16、(1)50;17;(2)补全条形图见详解;144°.
【解析】
(1)根据条形统计图读书4册的人数为4人,扇形图中占比8%,即可求得总人数;再根据读书2册人数占比34%,即可求得读书2册的人数;
(2)根据条形图中数据以及(1)中所求,可容易求得读书3册的人数,读书3册的人数除以总人数即为扇形图中所占百分比,再乘以360°,即为读书3册所对应扇形的圆心角度数.
【详解】
解:(1)根据条形统计图及扇形统计图知:本次问卷调查的学生共有人,
读书2册的学生有人.
(2)根据条形统计图知:读书3册的学生有人,补全如图:
读书3册的学生人数占比.
∴扇形统计图中读书3册所对应扇形的圆心角度数为:.
本题考查直方图,难度一般,是中考的常考知识点,熟练掌握扇形图、条形图的相关知识有顺利解题的关键.
17、特快列车的速度为100千米时,高铁的速度为250千米时.
【解析】
设特快列车的速度为x千米时,则高铁的速度为千米时,根据时间路程速度结合高铁比特快列车少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设特快列车的速度为x千米时,则高铁的速度为千米时,
根据题意得:,
解得:,
经检验,是原分式方程的解,
.
答:特快列车的速度为100千米时,高铁的速度为250千米时.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
18、证明见解析.
【解析】
首先根据平行四边形的性质,可得AD∥BC,AD=BC,BC∥EF,BC=EF,进而得出AD∥EF,AD=EF,即可判定.
【详解】
解:∵四边形ABCD和BEFC都是平行四边形,
∴AD∥BC,AD=BC,BC∥EF,BC=EF.
∴AD∥EF,AD=EF.
∴四边形AEFD是平行四边形.
此题主要考查利用平行四边形的性质进行平行四边形的判定,熟练掌握,即可解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、10
【解析】
根据勾股定理
c为三角形边长,故c=10.
20、1
【解析】
利用m是方程x2﹣2018x+1=0的一个根得到m2=2018m﹣1,m2+1=2018m,利用整体代入的方法得到原式=m++2,然后通分后再利用整体代入的方法计算.
【详解】
解:∵m是方程x2﹣2018x+1=0的一个根,
∴m2﹣2018m+1=0,
∴m2=2018m﹣1,m2+1=2018m,
∴m2﹣2017m++3=2018m﹣1﹣2017m++3
=m++2
=+2
=+2
=2018+2
=1.
故答案为:1.
本题考查一元二次方程的解得定义,代数式求值,分式的加减.掌握整体思想,整体代入是解题关键.
21、且
【解析】
分式方程去分母转化为整式方程,由分式方程的解是非负数,确定出a的范围即可.
【详解】
去分母得:,即,
由分式方程的解为非负数,得到≥0,且≠2,
解得:且,
故答案为:且.
此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.
22、3
【解析】
根据众数的定义:众数是指一组数据中出现次数最多的数据,利用众数的定义进行解答即可.
【详解】
因为数据1,3,5,6,3,5,3,中出现次数最多的数据是3,
所以这组数据的众数是3,
故答案为:3.
本题主要考查众数的定义,解决本题的关键是要熟练掌握众数的定义.
23、.
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式后继续应用平方差公式分解即可:.
考点:提公因式法和应用公式法因式分解.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.根据雕像上部与下部的高度之比等于下部与全部的高度比,列出方程求解即可.
【详解】
解:设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.
依题意,得
解得(不合题意,舍去).
经检验,是原方程的根.
雕像下部设计的高度应该为:1.236m
故答案为:1.236m
本题考查了黄金分割的应用,利用黄金分割中成比例的对应线段是解决问题的关键.
25、,-
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.
【详解】
解:原式=,
当x=0时,原式=-.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
26、
【解析】
利用平方差公式化简,然后去括号合并后约分即可;
【详解】
解:原式=
=
=
=;
本题主要考查了二次根式的化简求值,掌握二次根式的化简求值是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份湖北省恩施州2024年九年级数学第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省无锡江阴市南菁实验学校数学九上开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年贵州铜仁伟才学校九年级数学第一学期开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。