湖北省十堰市竹山县2025届九年级数学第一学期开学达标检测模拟试题【含答案】
展开
这是一份湖北省十堰市竹山县2025届九年级数学第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)与可以合并的二次根式是( )
A.B.C.D.
2、(4分)下列说法中错误的是( )
A.“买一张彩票中奖”发生的概率是0
B.“软木塞沉入水底”发生的概率是0
C.“太阳东升西落”发生的概率是1
D.“投掷一枚骰子点数为8”是确定事件
3、(4分)某市要组织一次足球邀请赛,参赛的每两个队都要比赛一场,赛程计划安排3天,每天安排2场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为( )
A.B.C.D.
4、(4分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是( )
A.B.
C.D.
5、(4分)一元二次方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
6、(4分)在平面直角坐标系中,点关于原点对称的点的坐标是
A.B.C.D.
7、(4分)下列表达式中是一次函数的是( )
A.B.C.D.
8、(4分)如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,连接OC,则∠AOC的度数为( )
A.151°B.122°C.118°D.120°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________ .
10、(4分)化简:___________.
11、(4分)已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:_____,使得四边形BCDE成为菱形.
12、(4分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为_____.
13、(4分)化简二次根式的结果是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商家在国庆节前购进一批A型保暖裤,十月份将此保暖裤的进价提高40%作为销售价,共获利1000元. 十一月份,商家搞“双十一”促销活动,将此保暖裤的进价提高30%作为促销价,销量比十月份增加了30件,并且比十月份多获利200元. 此保暖裤的进价是多少元?(请列分式方程进行解答)
15、(8分)(几何背景)如图1,AD为锐角△ABC的高,垂足为D.求证:AB2﹣AC2=BD2﹣CD2
(知识迁移)如图2,矩形ABCD内任意一点P,连接PA、PB、PC、PD,请写出PA、PB、PC、PD之间的数量关系,并说明理由.
(拓展应用)如图3,矩形ABCD内一点P,PC⊥PD,若PA=a,PB=b,AB=c,且a、b、c满足a2﹣b2=c2,则的值为 (请直接写出结果)
16、(8分)已知关于的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程两个根的绝对值相等,求此时的值.
17、(10分)如图,已知菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD上两个动点,若AE=DF,连接BF与DE相交于点G,连接CG,与BD相交于H.
(1)求∠BGE的大小;(2)求证:GC平分∠BGD.
18、(10分)如图,已知二次函数()的图象与轴交于两点(点在点的左侧),与轴交于点,且,,顶点为.
(1)求二次函数的解析式;
(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;
(3)探索:线段上是否存在点,使为直角三角形?如果存在,求出点的坐标;如果不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为 米.
20、(4分)如图,在数轴上点A表示的实数是___.
21、(4分)一组数据2,3,4,5,3的众数为__________.
22、(4分)若代数式在实数内范围有意义,则 x 的取值范围是_________.
23、(4分)在Rt△ABC中,∠B=90°,∠C=30°,AB=2,则BC的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线与轴交于点,点是该直线上一点,满足.
(1)求点的坐标;
(2)若点是直线上另外一点,满足,且四边形是平行四边形,试画出符合要求的大致图形,并求出点的坐标.
25、(10分)消费者在网店购物后,将从“好评、中评、差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的,若小明、小亮在某网店购买了同一商品,且都给出了评价,则两人中至少有一个给“好评”的概率为( )
A.B.C.D.
26、(12分)星马公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试成果认定,三项得分满分都为100分,三项的分数分别为 的比例计入每人的最后总分,有4位应聘者的得分如下所示:
(1)写出4位应聘者的总分;
(2)已知这4人专业知识、英语水平、参加社会实践与社团活动等三项的得分对应的方差分别为12.5、6.25、200,你对应聘者有何建议?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先对各个选项中的二次根式化简为最简二次根式(被开方数中不含分母且被开方数中不含有开得尽方的因数或因式),再在其中找的同类二次根式(化成最简二次根式后的被开方数相同,这样的二次根式叫做同类二次根式.).
【详解】
A. 为最简二次根式,且与不是同类二次根式,故错误;
B. = -3,与不是同类二次根式,故错误;
C. ,与是同类二次根式,故正确;
D. 为最简二次根式,且与不是同类二次根式,故错误.
故选C.
本题考查二次根式的加减,能将各个选项中根式化简为最简二次根式,并能找对同类二次根式是本题的关键.
2、A
【解析】
直接利用概率的意义以及事件的确定方法分别分析得出答案.
【详解】
A、“买一张彩票中奖”发生的概率是0,错误,符合题意;
B、“软木塞沉入水底”发生的概率是0,正确,不合题意;
C、“太阳东升西落”发生的概率是1,正确,不合题意;
D、“投掷一枚骰子点数为8”是确定事件,正确,不合题意;
故选:A.
此题主要考查了概率的意义以及事件的确定方法,解题关键是正确理解概率的意义.
3、B
【解析】
每个队要比(x-1)场,根据题意可以列出相应的一元二次方程,本题得以解决.
【详解】
解:由题意可得,
x(x−1)=3×2,
即x(x−1)=6,
故选:B.
本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的单循环问题.
4、D
【解析】
试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:
①男女生共20人;
②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.
据此列出方程组:.
故选D.
考点:由实际问题抽象出二元一次方程组.
5、D
【解析】
直接计算根的判别式,然后根据判别式的意义判断根的情况
【详解】
解:
所以方程无实数根
故选:D
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
6、C
【解析】
点A(x,y)关于原点的对称点是(-x,-y).
【详解】
在平面直角坐标系中,点关于原点对称的点的坐标是.
故选:C
本题考核知识点:中心对称和点的坐标.解题关键点:熟记对称的规律.
7、B
【解析】
根据一次函数解析式的结构特征可知,其自变量的最高次数为1、系数不为零,常数项为任意实数,即可解答
【详解】
A. 是反比例函数,故本选项错误;
B. 符合一次函数的定义,故本选项正确;
C. 是二次函数,故本选项错误;
D. 等式中含有根号,故本选项错误.
故选B
此题考查一次函数的定义,解题关键在于掌握其定义
8、B
【解析】
根据等腰三角形的性质得出AO垂直平分BC,根据线段垂直平分线性质得出AO=BO、OB=OC,利用等边对等角及角平分线性质,内角和定理求出所求即可.
【详解】
连接BO,延长AO交BC于E,
∵AB=AC,AO平分∠BAC,
∴AO⊥BC,AO平分BC,
∴OB=OC,
∵O在AB的垂直平分线上,
∴AO=BO,
∴AO=CO,
∴∠OAC=∠OCA=∠OAD=×58°=29°,
∴∠AOC=180°-2×29°=122°,
故选B.
此题考查了等腰三角形的性质,以及线段垂直平分线的性质,熟练掌握各自的性质是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.
【详解】
解:∵PE⊥AB,PF⊥AC,∠BAC=90°,
∴∠EAF=∠AEP=∠AFP=90°,
∴四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点,
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵AP×BC=AB×AC,
∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC==10,
∵AB=6,AC=8,
∴10AP=6×8,
∴AP=
∴AM=,
故答案为:.
考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式
10、
【解析】
被开方数因式分解后将能开方的数开方即可化简二次根式.
【详解】
,
故答案为:.
此题考查二次根式的化简,正确掌握最简二次根式的特点并正确将被开方数因式分解是解题的关键.
11、AB=2BC.
【解析】
先由已知条件得出CD=BE,证出四边形BCDE是平行四边形,再证出BE=BC,根据邻边相等的平行四边形是菱形可得四边形BCDE是菱形.
【详解】
解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:
∵DC=AB,E为AB的中点,
∴CD=BE=AE.
又∵DC∥AB,
∴四边形BCDE是平行四边形,
∵AB=2BC,
∴BE=BC,
∴四边形BCDE是菱形.
故答案为:AB=2BC.
本题考查了菱形的判定,平行四边形的判定;熟记平行四边形和菱形的判定方法是解决问题的关键.
12、1
【解析】
根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.
【详解】
解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,
∴∠DBO=∠OBC,∠ECO=∠OCB,
∵DE∥BC,
∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,
∴DB=DO,OE=EC,
∵DE=DO+OE,
∴DE=BD+CE=1.
故答案为1.
此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.
13、
【解析】
利用二次根式的性质化简.
【详解】
=.
故选为:.
考查了二次根式的化简,常用方法:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.
三、解答题(本大题共5个小题,共48分)
14、50元
【解析】
根据题意可得:十月份卖出保暖裤的数量+30=十一月份卖出的数量,据此列分式方程解答即可.
【详解】
解:设此保暖裤的进价是x元.
由题意得
化简,得
解得 x=50
经检验,x=50是原分式方程的解.
答:此保暖裤的进价是50元.
本题考查分式方程的应用,根据题意找准等量关系是本题的解题关键,注意分式方程的结果要检验.
15、【几何背景】:详见解析;【知识迁移】:详见解析;【拓展应用】:
【解析】
几何背景:由 Rt△ABD中,AD1=AB1﹣BD1,Rt△ACD中,AD1=AC1﹣CD1,则结论可证.
知识迁移:过P点作PE⊥AD,延长EP交BC于F,可证四边形ABFE,四边形DCFE是矩形.根据上面的结论求得PA、PB、PC、PD之间的数量关系.
拓展应用:根据勾股定理可列方程组,可求PD=c,PC=c即可得.
【详解】
解:几何背景:在Rt△ABD中,AD1=AB1﹣BD1
Rt△ACD中,AD1=AC1﹣CD1,
∴AB1﹣BD1=AC1﹣CD1,
∴AB1﹣AC1=BD1﹣CD1.
知识迁移:BP1﹣PC1 =BF1﹣CF1.
如 图:
过P点作PE⊥AD,延长EP交BC于F
∴四边形ABCD是矩形
∴AD∥BC∠BAD=∠ADC=∠DCB=∠ABC=90°
又∵PE⊥AD
∴PF⊥BC
∵PE是△APD的高
∴PA1﹣PD1=AE1﹣DE1.
∵PF是△PBC的高
∴BP1﹣PC1 =BF1﹣CF1.
∵∠BAD=∠ADC=∠DCB=∠ABC=90°,PE⊥AD,PF⊥BC
∴四边形ABFE,四边形DCFE是矩形
∴AE=BF,CF=DE
∴PA1﹣PD1=BP1﹣PC1.
拓展应用:∵PA1﹣PD1=BP1﹣PC1.
∴PA1﹣PB1=c1.
∴PD1﹣PC1=c1.
且PD1+PC1=c1.
∴PD=c,PC=c
∴,
故答案为.
本题考查了四边形的综合题,矩形的性质,勾股定理,关键是利用勾股定理列方程组.
16、(1)见解析;(2)或-1.
【解析】
(1)先求出判别式△的值,再对“△”利用完全平方公式变形即可证明;
(2)根据求根公式得出x1=m+2,x2=1,再由方程两个根的绝对值相等即可求出m的值.
【详解】
解:(1)∵,
∴方程总有两个实数根;
(2)∵,
∴,.
∵方程两个根的绝对值相等,
∴.
∴或-1.
本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.
17、(1)∠BGE=60°;(2)见解析.
【解析】
(1)由题意可证△ADB是等边三角形,可得AD=AB=BD,∠DAB=∠ADB=∠ABD,由“SAS”可证△ADE≌△DBF,可得∠ADE=∠DBF,由三角形外角性质可求∠BGE的大小;
(2)过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,由“AAS”可证Rt△CBN≌Rt△CDM,可得CM=CN,由角平分线的性质可得结论.
【详解】
(1)∵ABCD为菱形,
∴AB=AD.
∵∠BAD=60°,
∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
∴∠DBG=∠ADE
∴∠EGB=∠DBG+∠BDG=∠ADE+∠BDG=∠ADB=60°
(2)如图,过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,
由(1)得∠ADE=∠DBF
∴∠CBF=60°+∠DBF
=60°+∠ADE
=∠DEB
又∠DEB=∠MDC
∴∠CBF=∠CDM
∵BC=CD,∠CBF=∠CDM,∠CMD=∠CNG=90°
∴Rt△CBN≌Rt△CDM(AAS)
∴CN=CM,且CN⊥BF,CM⊥ED
∴点C在∠BGD的平分线上
即GC平分∠BGD.
本题考查了菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.
18、(1);(2)的取值范围是;(3)符合条件的点的坐标为
【解析】
(1)将,代入即可进行求解;
(2)先求出二次函数的顶点坐标,令,得,,得到,根据,的坐标求出直线的解析式,得到,,再根据梯形的面积公式列出S的关系式;
(3)先求出,根据直角三角形的性质分类讨论即可求解.
【详解】
解(1)将,代入中
∴,
(2),所以
令,得,,所以
设直线的解析式为,将,代入,得
,得,所以
所以,
的取值范围是
(3)由
∴
①以为直角顶点
,舍去
②以为直角顶点
,所以
③以为直角顶点
,
,,无解
综上,符合条件的点的坐标为
此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、待定系数法确定函数关系式及直角三角形勾股定理的性质,注意用分类讨论方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
试题分析:设小道进出口的宽度为x米,依题意得(32-2x)(22-x)=532,
整理,得x2-35x+3=2.
解得,x1=1,x2=3.
∵3>32(不合题意,舍去),
∴x=1.
答:小道进出口的宽度应为1米.
考点:一元二次方程的应用.
20、
【解析】
首先利用勾股定理计算出BO的长,然后再根据AO=BO可得答案.
【详解】
OB==,
∵OB=OA,
∴点A表示的实数是,故答案为:.
本题考查实数与数轴、勾股定理,解题的关键是掌握勾股定理的应用.
21、1.
【解析】
众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.
【详解】
本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.
故答案为1.
众数是指一组数据中出现次数最多的数据.
22、x>1
【解析】
根据分式及二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
【详解】
∵代数式在实数范围内有意义,
∴.
故答案为:x>1.
本题考查二次根式及分式有意义的条件,掌握二次根式及分式有意义的条件是解答此题的关键.
23、
【解析】
由在直角三角形中,30°角所对的边是斜边的一半得AC=2AB,再用运用勾股定理,易得BC的值.或直接用三角函数的定义计算.
【详解】
解:∵∠B=90°,∠C=30°,AB=2,
∴AC=2AB=4,
由勾股定理得:
故答案为:.
本题考查了解直角三角形,要熟练掌握好边角之间的关系、勾股定理及三角函数的定义.
二、解答题(本大题共3个小题,共30分)
24、(1)点坐标为;(2)点.
【解析】
(1)先由直线y=-2x+10与x轴交于点A,求出点A坐标为(5,0),所以OA=5;再设点B坐标为(m,n),根据B是直线y=-2x+10上一点,及OB=OA,列出关于m,n的方程组,解方程组即可;
(2)由于四边形OBCD是平行四边形,根据平行四边形的对边平行且相等得出BC∥OD,BC=OD,再由AB=BC,得出AB=OD,根据一组对边平行且相等的四边形是平行四边形证明出四边形OABD是平行四边形,则BD∥OA且BD=OA=5,由平移的性质即可求出点D的坐标.
【详解】
(1)由已知,点坐标为,所以.
设点坐标为,
因为是直线上一点
∴
又, ∴
解得 或 (与点重合,舍去)
∴点坐标为.
(2)符合要求的大致图形如图所示。
∵平行四边形
∴且,
∵
∴,
∴四边形是平行四边形
∴且,
∴点.
本题考查了一次函数的综合题,涉及到一次函数图象上点的坐标的求法,二元二次方程组的解法,平行四边形的性质与判定,利用了方程思想及数形结合的思想,(2)中根据平行四边形的性质与判定证明出四边形OABD是平行四边形是解题的关键.
25、C
【解析】
画树状图展示所有9种等可能的结果数,找出两人中至少有一个给“好评”的结果数,然后根据概率公式求解.
【详解】
画树状图为:
共有9种等可能的结果数,两人中至少有一个给“好评”的结果数为5,
所以两人中至少有一个给“好评”的概率=.
故选C.
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
26、(1)A总分为86分,B总分为82分,C总分为81分,D总分为82分;(2)见详解
【解析】
(1)求四位应聘者总分只需将各部分分数按比例相加即可;
(2)根据方差的意义分析即可.
【详解】
解:(1)应聘者A总分为85×50%+85×30%+90×20%=86分;
应聘者B总分为85×50%+85×30%+70×20%=82分;
应聘者C总分为80×50%+90×30%+70×20%=81分;
应聘者D总分为90×50%+90×30%+50×20%=82分;
(2)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升.
本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
题号
一
二
三
四
五
总分
得分
批阅人
项目
得分
应聘者
专业知识
英语水平
参加社会实践与社团活动等
A
85
85
90
B
85
85
70
C
80
90
70
D
80
90
50
相关试卷
这是一份湖北省广水市2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖北省枣阳市实验中学数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省十堰市实验中学九年级数学第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。