湖北省武汉洪山区五校联考2024年九上数学开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)由线段a,b,c可以组成直角三角形的是( )
A.a=5,b=8,c=7B.a=2,b=3,c=4
C.a=24,b=7,c=25D.a=5,b=5,c=6
2、(4分)如图,两个大小不同的正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,两个正方形重叠部分的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )
A.B.C.D.
3、(4分)在中招体育考试中,某校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:=8.2,=21.7,=15,=17.2,则四个班体育考试成绩最不稳定的是( )
A.甲班B.乙班C.丙班D.丁班
4、(4分)如果一个多边形的内角和是外角和的3倍,那么这个多边形是( )
A.四边形B.六边形C.八边形D.十边形
5、(4分)一次函数y=kx+m的图象如图所示,若点(0,a),(﹣2,b),(1,c)都在函数的图象上,则下列判断正确的是( )
A.a<b<cB.c<a<bC.a<c<bD.b<a<c
6、(4分)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A.15B.18C.21D.24
7、(4分)12名同学分成甲、乙两队参加播体操比赛,已知每个参赛队有6名队员,他们的身高(单位:cm)如下表所示:
设这两队队员平均数依次为,,身高的方差依次为,,则下列关系中,完全正确的是( )
A.,B.,
C.,D.,
8、(4分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是( )
A.4πB.2πC.πD.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)使有意义的x的取值范围是_____.
10、(4分)在函数中,自变量x的取值范围是__________________.
11、(4分)如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.
12、(4分)计算:若,求的值是 .
13、(4分)若关于x的方程+=3的解为正数,则m的取值范围是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组:.并判断这个数是否为该不等式组的解.
15、(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是________;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
16、(8分)如图,,是上的一点,且,.
求证:≌
17、(10分)我们把对角线互相垂直的四边形叫做垂美四边形.
(1)(概念理解)在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是___________.
(2)(性质探究)如图2,试探索垂美四边形ABCD的两组对边AB,CD与BC ,AD之间的数量关系,写出证明过程。
(3)(问题解决)如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外做正方形ACFG和正方形ABDE,连接CE,BG,GE, 已知AC=,BC=1 求GE的长.
18、(10分)如图直线y=2x+m与y=(n≠0)交于A,B两点,且点A的坐标为(1,4).
(1)求此直线和双曲线的表达式;
(2)过x轴上一点M作平行于y轴的直线1,分别与直线y=2x+m和双曲线y=(n≠0)交于点P,Q,如果PQ=2QM,求点M的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简:= .
20、(4分)如图是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人成绩比较稳定的是________.
21、(4分)某班有48名同学,在一次英语单词竞赛成绩统计中,成绩在81~ 90这一分数段的人数所占的频率是0.25,那么成绩在这个分数段的同学有_________名.
22、(4分)如图,是用形状、大小完全相同的等腰梯形镶嵌的图案,则这个图案中的等腰三角形的底角(指锐角)的度数是_____.
23、(4分)使二次根式有意义的x的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)正方形ABCD的边长为6,点E、F分别在AB、BC上,将AD、DC分别沿DE、DF折叠,点A、C恰好都落在P处,且.
求EF的长;
求的面积.
25、(10分)计算:
(1)
(2)
(3)(3+)(3﹣)
(4)(﹣3)﹣2+﹣|1﹣2|﹣(﹣3)0
26、(12分)如图,AD∥BC,AC⊥AB,AB=3,AC=CD=1.
(1)求BC的长;
(1)求BD的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由勾股定理的逆定理,只要验证两条较短边的平方和是否等于最长边的平方即可.
【详解】
52+72≠82,故不是直角三角形,故选项A错误;
22+32≠42,故不是直角三角形,故选项B错误;
72+242=252,故是直角三角形,故选项C正确;
52+52≠62,故不是直角三角形,故选项D错误.
故选:C.
本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
2、C
【解析】
小正方形运动过程中,y与x的函数关系为分段函数,即当0≤x<完全重叠前,函数为为增函数;当完全重叠时,函数为平行于x轴的线段;当不再完全重叠时,函数为为减函数.即按照自变量x分为三段.
【详解】
解:依题意,阴影部分的面积函数关系式是分段函数,
面积由“增加→不变→减少”变化.
故选C.
本题考查了动点问题的函数图象.关键是理解图形运动过程中的几个分界点.本题也可以通过分析s随x的变化而变化的趋势及相应自变量的取值范围,而不求解析式来解决问题.
3、B
【解析】
方差越小数据越稳定,根据方差的大小即可得到答案.
【详解】
∵8.2<15<17.2<21.7,
∴乙班的体育考试成绩最不稳定,
故选:B.
此题考查方差的运用,方差考查数据稳定性,方差越小数据越稳定,方差越大数据越不稳定.
4、C
【解析】
设这个多边形是n边形,根据题意得:(n–2)•110°=3×360°,解得:n=1.故选C.
5、B
【解析】
由一次函数y=kx+m的图象,可得y随x的增大而减小,进而得出a,b,c的大小关系.
【详解】
解:由图可得,y随x的增大而减小,
∵﹣2<0<1,
∴c<a<b,
故选:B.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
6、A
【解析】
此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.
【详解】
解:∵▱ABCD的周长为32,
∴2(BC+CD)=32,则BC+CD=1.
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,
∴OD=OB=BD=2.
又∵点E是CD的中点,DE=CD,
∴OE是△BCD的中位线,∴OE=BC,
∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=2+9=3,
即△DOE的周长为3.
故选A
此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.
7、D
【解析】
根据平均数的定义分别计算甲乙的平均数,然后根据方差的计算公式分别计算甲乙的方差即可.
【详解】
∵=175,
=,
∴,
=,
==10,
∴,
故选D.
此题主要考查了算术平均数与方差的求法,正确记忆方差公式S2= [(x1-)2+(x2-)2+…+(xn-)2],是解决问题的关键.
8、B
【解析】
如图,连接AO,BO,先求出∠AOC的长,再根据弧长公式求出的长即可.
【详解】
如图,连接AO,BO,根据题意可知,∠CDA=180°-∠B=180°-135°=45°,∴∠AOC=2∠CDA=90°,∴.故选B.
本题主要考查弧与圆周角的关系、圆周角定理以及弧长公式,求出∠AOC的大小是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≥2
【解析】
根据题意可得2x﹣4≥0,然后求解关于x的一元一次不等式即可.
【详解】
解:∵有意义,
∴2x﹣4≥0,
解得:x≥2.
故答案为x≥2.
本题考查了算术平方根有意义,解一元一次不等式,解此题的关键在于熟练掌握其知识点.
10、x≥0且x≠1
【解析】
根据被开方数是非负数且分母不等于零,可得答案.
【详解】
由题意,得x≥0且x﹣1≠0,
解得x≥0且x≠1,
故答案为:x≥0且x≠1.
本题考查了函数自变量的取值范围,利用被开方数是非负数且分母不等于零得出不等式是解题关键.
11、
【解析】
试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.
∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,
∴S△ABC=2S△BCE,S△ABD=2S△ADE,
∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,
∴AC=2BD,
∴OD=2OC.
∵CD=k,
∴点A的坐标为(,3),点B的坐标为(-,-),
∴AC=3,BD=,
∴AB=2AC=6,AF=AC+BD=,
∴CD=k=.
【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.
12、﹣.
【解析】
试题分析:∵-=3,
∴y-x=3xy,
∴====.
故答案为:.
点睛:本题考查了分式的化简求值,把已知进行变形得出y-x=3xy,并进行整体代入是解决此题的关键.
13、m<且m≠
【解析】
去分母得:x+m-3m=3(x-3)
去括号得x+m-3m=3x-9
移项,整理得:x=
∵x>0,且x≠3
∴>0,且≠3
解得:m<且m≠.
三、解答题(本大题共5个小题,共48分)
14、, 不是不等式组的解.
【解析】
先求出每个不等式的解集,再得出不等式组的解集,由x的取值范围即可得出结论.
【详解】
解.
解不等式(1)得:,
解不等式(2)得:,
所以不等式是。
∵>1
∴不是不等式组的解。
本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x的取值范围是解答此题的关键.
15、(1)0.2;(2)补全征文比赛成绩频数分布直方图见解析;(3)全市获得一等奖征文的篇数为300篇.
【解析】
【分析】(1)由频率之和为1,用1减去其余各组的频率即可求得c的值;
(2)由频数分布表可知 60≤m<70的频数为:38,频率为:0.38,根据总数=频数÷频率得样本容量,再由频数=总数×频率求出a、b的值,根据a、b的值补全图形即可;
(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,再用总篇数×一等奖的频率=全市一等奖征文篇数.
【详解】(1)c=1-0.38-0.32-0.1=0.2,
故答案为:0.2;
(2)38÷0.38=100,a=100×0.32=32,b=100×0.2=20,
补全征文比赛成绩频数分布直方图如图所示:
(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,
∴全市获得一等奖征文的篇数为:1000×0.3=300(篇),
答:全市获得一等奖征文的篇数为300篇.
【点睛】本题考查了频数分布表、频数分布直方图,熟知频数、频率、总数之间的关系是解本题的关键.
16、证明见解析.
【解析】
此题比较简单,根据已知条件,利用直角三角形的HL可以证明题目结论.
【详解】
证明:∵∠1=∠2
∴DE=CE
∵∠A=∠B=90°
∴AE=BC
∴Rt△ADE≌Rt△BEC(HL)
此题考查直角三角形全等的判定,解题关键在于掌握判定定理
17、菱形、正方形
【解析】
【分析】(1)根据垂美四边形的定义进行判断即可;
(2)根据垂直的定义和勾股定理解答即可;
(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.
【详解】(1)菱形的对角线互相垂直,符合垂美四边形的定义,
正方形的对角线互相垂直,符合垂美四边形的定义,
而平行四边形、矩形的对角线不一定垂直,不符合垂美四边形的定义,
故答案为:菱形、正方形;
(2)猜想结论:AD2+BC2=AB2+CD2,证明如下:
如图2,连接AC、BD,交点为E,则有AC⊥BD,
∵AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,
AB2+CD2=AE2+BE2+CE2+DE2,
∴AD2+BC2=AB2+CD2;
(3)连接CG、BE,设AB与CE的交点为M
∵∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
又∵AG=AC,AB=AE,
∴△GAB≌△CAE(SAS),
∴∠ABG=∠AEC,
又∠AEC+∠AME=90°,∠AME=∠BMC,
∴∠ABG+∠BMC=90°,即CE⊥BG,
∴四边形CGEB是垂美四边形,
由(2)得,CG2+BE2=CB2+GE2,
∵AC=,BC=1 ∴AB=2,
∴ ,
∴ ,
∴ ,
GE的长是.
【点睛】本题考查了四边形综合题,涉及到正方形的性质、菱形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.
18、 (1)直线的解析式为y=2x+2,反比例函数的解析式为y=;(2)M(﹣3,0)或(2,0).
【解析】
(1)利用待定系数法即可解决问题;
(2)设M(a,0),表示出P(a,2a+2),Q(a,),根据PQ=2QD,列方程|2a+2-|=|2×|,解得a=2,a=-3,即可得到结果.
【详解】
(1)∵y=2x+m与(n≠0)交于A(1,4),
∴,
∴,
∴直线的解析式为y=2x+2,反比例函数的解析式为.
(2)设M(a,0),
∵l∥y轴,
∴P(a,2a+2),Q(a,),
∵PQ=2QM,
∴|2a+2﹣|=|2×|,
解得:a=2或a=﹣3,
∴M(﹣3,0)或(2,0).
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
试题分析:原式=.
考点:二次根式的乘除法.
20、乙
【解析】
∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,
∴甲的方差大于乙的方差,
∴乙的成绩比较稳定.
故答案为乙.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
21、1
【解析】
由题意直接根据频数=频率×总数,进而可得答案.
【详解】
解:由题意可得成绩在81~ 90这个分数段的同学有48×0.25=1(名).
故答案为:1.
本题主要考查频数和频率,解题的关键是掌握频率等于频数除以总数进行分析计算.
22、60°
【解析】
本题主要考查了等腰梯形的性质,平面镶嵌(密铺).关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
【详解】
解:由图可知,铺成的一个图形为平行四边形,而原图形为等腰梯形,则现铺成的图形的底角为:180°÷3=60°.
故答案为60°.
23、
【解析】
试题分析:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
考点:二次根式有意义的条件.
二、解答题(本大题共3个小题,共30分)
24、 (1)5;(2)6.
【解析】
(1) 设,则,,由勾股定理得得,,求出,可得(2)先求BE,BF,再根据,可得结果.
【详解】
解:设,则,,
由勾股定理得得,,解得,,即,
;
,,
.
,,
,
.
本题考核知识点:正方形,勾股定理. 解题关键点:运用折叠的性质得到边相等.
25、(1)-;(2)5;(3)4;(5).
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用完全平方公式和二次根式的乘法法则运算;
(3)利用平方差公式计算;
(4)根据负整数指数幂的意义、零指数幂的意义和绝对值的意义计算.
【详解】
解:(1)原式=2﹣2+﹣3
=;
(2)原式=2﹣2+3+6
=5﹣2+2
=5;
(3)原式=9﹣5
=4;
(4)原式=+2+1﹣2﹣1
=.
本题考查了二次根式的四则混合运算,掌握运算法则是解决本题的关键.
26、(1)BC=;(1)BD=2
【解析】
(1)在Rt△ABC中利用勾股定理即可求出BC的长;
(1)过点B作BE⊥DC交DC的延长线于点E.根据等边对等角的性质以及平行线的性质得出∠1=∠3,利用角平分线的性质得出AB=BE=3,在Rt△BCE中,根据勾股定理可得EC=1,则ED=4,在Rt△BDE中,利用勾股定理可得BD=2.
【详解】
(1)在Rt△ABC中,∵AC⊥AB,AB=3,AC=1,
∴BC=;
(1)过点B作BE⊥DC交DC的延长线于点E.
∵AC=CD,
∴∠1=∠ADC,
又∵AD∥BC,
∴∠3=∠ADC,∠1=∠1,
∴∠1=∠3,
又∵AC⊥AB,BE⊥DC,
∴AB=BE=3,
又由(1)BC=,
在Rt△BCE中,由勾股定理可得EC=1;
∴ED=1+1=4,
在Rt△BDE中,由勾股定理可得BD=2.
本题考查了勾股定理,等腰三角形、平行线、角平分线的性质,掌握各定理是解题的关键.
题号
一
二
三
四
五
总分
得分
队员1
队员2
队员3
队员4
队员5
队员6
甲队
176
175
174
172
175
178
乙队
170
176
173
174
180
177
2025届湖北省武汉新洲区五校联考九上数学开学学业质量监测模拟试题【含答案】: 这是一份2025届湖北省武汉新洲区五校联考九上数学开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖南邵阳区六校联考数学九上开学经典模拟试题【含答案】: 这是一份2024年湖南邵阳区六校联考数学九上开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省武汉武昌区四校联考数学九上开学联考试题【含答案】: 这是一份2024年湖北省武汉武昌区四校联考数学九上开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。