终身会员
搜索
    上传资料 赚现金
    湖北省武汉市江夏区2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】
    立即下载
    加入资料篮
    湖北省武汉市江夏区2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】01
    湖北省武汉市江夏区2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】02
    湖北省武汉市江夏区2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉市江夏区2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】

    展开
    这是一份湖北省武汉市江夏区2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,函数y=kx和y=﹣x+4的图象相交于点A(3,m)则不等式kx≥﹣x+4的解集为( )
    A.x≥3 B.x≤3 C.x≤2 D.x≥2
    2、(4分)如图,在四边形ABCD中,点D在AC的垂直平分线上,.若,则的度数是( )
    A.B.C.D.50°
    3、(4分)用反证法证明“”,应假设( )
    A.B.C.D.
    4、(4分)若分式在实数范围内有意义,则的取值范围是( )
    A.B.C.D.
    5、(4分)某交警在一个路口统计某时间段来往车辆的车速情况如下表,则上述车速的中位数和众数分别是( )
    A.50,8B.50,50C.49,50D.49,8
    6、(4分)10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是( )
    A.2B.C.4D.
    7、(4分)如图,正方形ABCD中,点E在BD上,且,延长CE交AD于F,则为( )
    A.B.C.D.
    8、(4分)如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k-m)x+b<0的解集为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图所示,为估计池塘两岸边,两点间的距离,在池塘的一侧选取点,分别取、的中点,,测的,则,两点间的距离是______.
    10、(4分)如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.
    11、(4分)已知一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条件的函数式_____.(答案不唯一)
    12、(4分)如果最简二次根式与最简二次根式同类二次根式,则x=_______.
    13、(4分)如图,在五边形中,,和的平分线交于点,则的度数为__________°.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系xOy中,对于点,若点Q的坐标为,其中a为常数,则称点Q是点P的“a级关联点”例如,点的“3级关联点”为,即.
    已知点的“级关联点”是点,点B的“2级关联点”是,求点和点B的坐标;
    已知点的“级关联点”位于y轴上,求的坐标;
    已知点,,点和它的“n级关联点”都位于线段CD上,请直接写出n的取值范围.
    15、(8分)在平面直角坐标系中,直线(且)与轴交于点,过点作直线轴,且与交于点.
    (1)当,时,求的长;
    (2)若,,且轴,判断四边形的形状,并说明理由.
    16、(8分)已知:在平行四边形ABCD中,点E、F分别在AD和BC上,点G、H在AC上,且AE=CF,AH=CG.
    求证:四边形EGFH是平行四边形.
    17、(10分)如图,在平面直角坐标系中,OA=OB=8,OD=1,点C为线段AB的中点
    (1)直接写出点C的坐标 ;
    (2)求直线CD的解析式;
    (3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
    18、(10分)如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.
    (1)求∠ABC的度数;
    (2)如果AC=4,求DE的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若关于x的方程的解是负数,则a的取值范围是_____________。
    20、(4分)点P在第四象限内,P到轴的距离是3,到轴的距离是5,那么点P的坐标为 .
    21、(4分)若平行四边形中两个内角的度数比为1:2,则其中一个较小的内角的度数是________°.
    22、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:=2,=1.5,则射击成绩较稳定的是_______(填“甲”或“乙”).
    23、(4分)如图,在四边形ABCD中,分别为线段上的动点(含端点,但点M不与点B重合),E、F分别为的中点,若,则EF长度的最大值为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF
    (1)证明:AF=CE;
    (2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.
    25、(10分)某村为绿化村道,计划在村道两旁种植 A、B 两种树木,需要购买这两种树苗 800 棵,A、B 两种树苗的相关信息如表:
    设购买 A 种树苗 x 棵,绿化村道的总费用为 y 元,解答下列问题:
    (1)求出 y 与 x 之间的函数关系式.
    (2)若这批树苗种植后成活了 670 棵,则绿化村道的总费用需要多少元?
    (3)若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗多少棵?
    26、(12分)已知一次函数过点(-2,5),和直线,分别在下列条件下求这个一次函数的解析式.
    (1)它的图象与直线平行;
    (2)它的图象与y轴的交点和直线与y轴的交点关于轴对称.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    将点A(m,3)代入y=−x+4得,−m+4=3,
    解得,m=2,
    所以点A的坐标为(2,3),
    由图可知,不等式kx⩾−x+4的解集为x⩾2.
    故选D
    本题考查了一次函数和不等式(组)的关系以及数形结合思想的应用.解决此类问题的关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
    2、A
    【解析】
    根据平行线的性质可得,再由线段垂直平分线的性质可得AD=CD,根据等腰三角形的性质可得,由三角形的内角和定理即可求得的度数.
    【详解】
    ∵,
    ∴,
    ∵点D在AC的垂直平分线上,
    ∴AD=CD,
    ∴,
    ∴.
    故选A.
    本题考查了平行线的性质、线段垂直平分线的性质及等腰三角形的性质,正确求得是解决问题的关键.
    3、D
    【解析】
    根据命题:“a>0”的反面是:“a≤0”,可得假设内容.
    【详解】
    解:由于命题:“a>0”的反面是:“a≤0”,
    故用反证法证明:“a>0”,应假设“a≤0”,
    故选:D.
    此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
    4、A
    【解析】
    根据分式有意义的条件即可求出答案.
    【详解】
    由分式有意义的条件可知:x-1≠0,
    ∴x≠1,
    故选A.
    考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:
    (1)分式无意义⇔分母为零;
    (2)分式有意义⇔分母不为零;
    (3)分式值为零⇔分子为零且分母不为零.
    5、B
    【解析】
    把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.
    【详解】
    解:要求一组数据的中位数,
    把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,
    所以中位数是50,
    在这组数据中出现次数最多的是50,
    即众数是50,
    故选:B.
    本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.
    6、B
    【解析】
    先设报3的人心里想的数为x,利用平均数定义表示报5的人心里想的数;报7的人心里想的数;报9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.
    【详解】
    设报3的人心里想的数是x
    ∵报3与报5的两个人报的数的平均数是4
    ∴报5的人心里想的数应该是8-x
    于是报7的人心里想的数应该是12-(8-x)=4+x
    报9的人心里想的数应该是16-(4+x)=12-x
    报1的人心里想的数应该是20-(12-x)=8+x
    报3的人心里想的数应该是4-(8+x)=-4-x
    所以x=-4-x,解得x=-2
    故答案选择B.
    本题属于阅读理解和探查规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.
    7、B
    【解析】
    先根据正方形的性质得出,再根据等腰三角形的性质、三角形的内角和定理可得,然后根据平行线的性质即可得.
    【详解】
    四边形ABCD是正方形
    ,即
    解得
    故选:B.
    本题考查了正方形的性质、等腰三角形的性质、平行线的性质等知识点,掌握正方形的性质是解题关键.
    8、B
    【解析】
    根据函数图像分析即可解题.
    【详解】
    由函数图像可知一次函数单调递减,正比例函数单调递增,
    将(k-m)x+b<0变形,即kx+b<mx,
    对应图像意义为一次函数图像在正比例函数图像下方,即交点P的右侧,
    ∵点P的横坐标为1,
    ∴即为所求解集.故选B
    本题考查了一次函数与正比例函数的图像问题,数形结合的解题方法,中等难度, 将不等式问题转化为图像问题是解题关键,
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、36
    【解析】
    根据E、F是CA、CB的中点,即EF是△CAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.
    【详解】
    解:据E、F是CA、CB的中点,即EF是△CAB的中位线,
    ∴EF=AB,
    ∴AB=2EF=2×18=36.
    故答案为36.
    本题考查了三角形的中位线定理应用,灵活应用三角形中位线定理是解题的关键.
    10、1260
    【解析】
    首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.
    【详解】
    解:∵多边形的每一个外角都等于,
    ∴它的边数为:,
    ∴它的内角和:,
    故答案为:.
    此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.
    11、y=x+1
    【解析】
    ∵一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,∴k>0,图象经过点(0,1),∴b=1,只要符合上述条件即可.
    【详解】
    解:只要k>0,b>0且过点(0,1)即可,由题意可得,k>0,b=1,符合上述条件的函数式,例如y=x+1(答案不唯一)
    一次函数y=kx+b的图象有四种情况:
    ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
    ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
    ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
    ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
    12、1
    【解析】
    ∵最简二次根式与最简二次根式是同类二次根式,
    ∴x+3=1+1x,解得:x=1.当x=1时,6和是最简二次根式且是同类二次根式.
    13、
    【解析】
    先根据五边形的内角和公式及求出∠ABC+∠BCD的度数,再利用角平分线的定义求出∠OBC+∠OCB的值,然后利用三角形内角和公式即可求出∠BOC的值.
    【详解】
    ∵,
    ∴∠ABC+∠BCD=540°-330°=210°.
    ∵和的平分线交于点,
    ∴∠OBC+∠OCB=(∠ABC+∠BCD)=×210°=105°,
    ∴∠BOC=180°-105°=75°.
    故答案为:75.
    本题考查了多边形的内角和公式,角平分线的定义,熟练掌握多边形的内角和公式(n-2) ×180°是解答本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1),;(2);(3).
    【解析】
    (1)根据关联点的定义,结合点的坐标即可得出结论.
    (2)根据关联点的定义和点M(m-1,2m)的“-3级关联点”M'位于y轴上,即可求出M'的坐标.
    (3)因为点C(-1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N'都位于线段CD上,可得到方程组,解答即可.
    【详解】
    解:点的“级关联点”是点,

    即.
    设点,
    点B的“2级关联点”是,

    解得

    点的“级关联点”为,
    位于y轴上,

    解得:


    点和它的“n级关联点”都位于线段CD上,




    解得:.
    本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,正确理解题意,灵活运用所学知识解决问题是解题的关键.
    15、(1)BC=1;(2)四边形OBDA是平行四边形,见解析.
    【解析】
    (1)理由待定系数法求出点D坐标即可解决问题;
    (2)四边形OBDA是平行四边形.想办法证明BD=OA=3即可解决问题.
    【详解】
    解:(1)当m=-2,n=1时,直线的解析式为y=-2x+1,
    当x=1时,y=-1,
    ∴B(1,-1),
    ∴BC=1.
    (2)结论:四边形OBDA是平行四边形.
    理由:如图,∵BD∥x轴,B(1,1-m),D(4,3+m),
    ∴1-m=3+m,
    ∴m=-1,
    ∵B(1,m+n),
    ∴m+n=1-m,
    ∴n=3,
    ∴直线y=-x+3,
    ∴A(3,0),
    ∴OA=3,BD=3,
    ∴OA=BD,OA∥BD,
    ∴四边形OBDA是平行四边形.
    本题考查一次函数图象上点的特征,平行四边形的判断等知识,解题的关键是熟练掌握待定系数法,灵活运用所学知识解决问题,属于中考常考题型.
    16、见解析
    【解析】
    先根据平行四边形的性质得到AD∥BC,进而有∠EAH=∠FCG,再证明△AHE≌△CGF,利用全等三角形的性质和直线平行的判定得到FG∥EH,再根据平行四边形的判定定理即可证明;
    【详解】
    证明:∵ABCD为平行四边形,
    ∴AD∥BC(平行四边形对边平行)
    ∴∠EAH=∠FCG(两直线平行,内错角相等).
    又∵AE=CF,AH=CG,
    ∴△AHE≌△CGF(SAS).
    ∴EH=FG,∠FGH=∠EHG(全等三角形对应边相等,对应角相等).
    ∴FG∥EH(内错角相等,两直线平行).
    ∴四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形).
    本题主要考查了平行四边形的判定与性质、三角形全等的判定与性质,掌握平行四边形的性质与判定定理是解题的关键.
    17、 (1)点C的坐标为(4,4);(2)直线CD的解析式是y=;(3)点F的坐标是(11,4),(5,-4)或(-3,4).
    【解析】
    (1)由OA,OB的长度可得出点A,B的坐标,结合点C为线段AB的中点可得出点C的坐标;
    (2)由OD的长度可得出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线CD的解析式;
    (3)设点F的坐标为(m,n),分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分可得出关于m,n的二元一次方程组,解之即可得出点F的坐标.
    【详解】
    (1)∵OA=OB=8,点A在x轴正半轴,点B在y轴正半轴,
    ∴点A的坐标为(8,0),点B的坐标为(0,8).
    又∵点C为线段AB的中点,
    ∴点C的坐标为(4,4).
    (2)∵OD=1,点D在x轴的正半轴,
    ∴点D的坐标为(1,0).
    设直线CD的解析式为y=kx+b(k≠0),
    将C(4,4),D(1,0)代入y=kx+b,
    得:,
    解得:,
    ∴直线CD的解析式是y=.
    (3)存在点F,使以A、C、D、F为点的四边形为平行四边形,设点F的坐标为(m,n).
    分三种情况考虑,如图所示:
    ①当AC为对角线时,
    ∵A(8,0),C(4,4),D(1,0),
    ∴,
    解得:,
    ∴点F1的坐标为(11,4);
    ②当AD为对角线时,
    ∵A(8,0),C(4,4),D(1,0),
    ∴,
    解得:,
    ∴点F2的坐标为(5,-4);
    ③当CD为对角线时,
    ∵A(8,0),C(4,4),D(1,0),
    ∴,
    解得:,
    ∴点F3的坐标为(-3,4).
    综上所述,点F的坐标是(11,4),(5,-4)或(-3,4).
    本题考查了中点坐标公式、待定系数法求一次函数解析式、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)由点A,B的坐标,利用中点坐标公式求出点C的坐标;(2)根据点的坐标,利用待定系数法求出直线CD的解析式;(3)分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分找关于m,n的二元一次方程组.
    18、(1);(2).
    【解析】
    试题分析:(1)要想求出∠ABC的度数,须知道∠DAB的度数,由菱形性质和线段垂直平分线的性质可证出△ABD是等边三角形,∴∠DAB=60°,于是;(2)先证△ABO≌△DBE,从而知道DE=AO,AO=AC的一半,于是DE的长就知道了.
    试题解析:(1)∵四边形ABCD是菱形,,∥,∴.∵为的中点,,∴.∴.∴ △为等边三角形.∴.∴.(2)∵四边形是菱形, ∴于,∵于,∴.∵∴.∴.
    考点:1.菱形性质;2.线段垂直平分线性质;3.等边三角形的判定与性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    :把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:
    【详解】
    解:∵

    ∵关于x的方程的解是负数


    解得
    本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.
    20、(5,-1).
    【解析】
    试题分析:已知点P在第四象限,可得点P的横、纵坐标分别为正数、负数,又因为点P到x轴的距离为1,到y轴的距离为5,所以点P的横坐标为5或-5,纵坐标为1或-1.所以点P的坐标为(5,-1).
    考点:各象限内点的坐标的特征.
    21、60°
    【解析】
    根据平行四边形的性质得出,推出,根据,求出即可.
    【详解】
    四边形是平行四边形,



    .
    故答案为:.
    本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.
    22、答案为:乙 ;
    【解析】
    【分析】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
    【详解】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定;乙的方差比较小,所以乙的成绩比较稳定.
    故答案为乙
    【点睛】本题考核知识点:方差.解题关键点:理解方差的意义.
    23、1
    【解析】
    连接、,根据勾股定理求出,根据三角形中位线定理解答.
    【详解】
    解:连接、,
    在中,,
    点、分别为、的中点,

    由题意得,当点与点重合时,最大,
    的最大值是4,
    长度的最大值是1,
    故答案为:1.
    本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)四边形ACEF是菱形,理由见解析.
    【解析】
    (1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;
    (2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.
    【详解】
    试题解析:(1)∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,
    ∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;
    (2)当∠B=30°时,四边形ACEF是菱形;理由如下:
    ∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,
    又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.
    本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质等,结合图形,根据图形选择恰当的知识点是关键.
    25、(1)y=—50x+136000;(2)111000 元.(3)若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗 1 棵.
    【解析】分析:(1)设购买A种树苗x棵,则购买B种树苗(800﹣x)棵,根据总费用=(购买A种树苗的费用+种植A种树苗的费用)+(购买B种树苗的费用+种植B种树苗的费用),即可求出y(元)与x(棵)之间的函数关系式;
    (2)根据这批树苗种植后成活了 670 棵,列出关于x的一元一次方程,求出x的值,即可求解.
    (3)根据总费用不超过 120000 元,列出关于x的一元一次不等式,求解即可.
    详解:(1)设购买 A 种树苗 x 棵,则购买 B 种树苗(800—x)棵,依题意得:
    y=(100+20)x+(150+20)×(800—x)=—50x+136000
    (2)由题意得:80%x+90%(800—x)=670
    解得:x=500
    当 x=500 时,y=—50×500+136000=111000(元).
    答:若这批树苗种植后成活了 670 棵,则绿化村道的总费用需要 111000 元.
    (3)由(1)知购买 A 种树苗 x 棵,购买 B 种树苗(800—x)棵时,
    总费用 y=—50x+136000,由题意得:
    —50x+136000≤120000
    解得:x≥320
    ∴800—x≤1.
    故最多可购买 B 种树苗 1 棵.
    答:若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗 1 棵.
    点睛:本题考查了一次函数的应用,一元一次方程的应用,一元一次不等式的应用.此题难度适中,解题的关键是理解题意,根据题意求得函数解析式、列出方程与不等式,明确不等关系的语句“不超过”的含义.
    26、
    【解析】
    (1)与直线平行,则k=,再将(-2,5)代入求出b;(2)一次函数与y轴的交点为(0,b),它与直线与y轴的交点(0,3)关于x轴对称,则b=-3,再将(-2,5)代入求出k.
    【详解】
    解:(1)由一次函数与直线平行,则k=,
    将(-2,5)代入y=b,得5=×(-2)+b,解得b=2,
    则一次函数解析式为y=x+2;
    (2)一次函数与y轴的交点为(0,b),直线与y轴的交点坐标为(0,3),
    又(0,b)与(0,3)关于x轴对称,
    则b=-3,
    将(-2,5)代入y=kx-3,得5=-2k-3,解得k=-4,
    则一次函数解析式为y=-4x-3.
    题号





    总分
    得分
    批阅人
    树苗
    单价(元/棵)
    成活率
    植树费(元/棵)
    A
    100
    80%
    20
    B
    150
    90%
    20
    相关试卷

    2024年湖北省谷城县数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024年湖北省谷城县数学九上开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省武汉江夏区五校联考九上数学开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年湖北省武汉江夏区五校联考九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map