湖北省武汉市市新观察2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知点在抛物线上,则下列结论正确的是( )
A.B.C.D.
2、(4分)如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )
A.6B.8C.10D.12
3、(4分)以下列各组数为边长,能构成直角三角形的是( )
A.1,2,3B.4,5,6C.,,D.32,42,52
4、(4分)将直线向下平移个单位长度得到新直线,则的值为( )
A.B.C.D.
5、(4分)年一季度,华为某销公营收入比年同期增长,年第一季度营收入比年同期增长,年和年第一季度营收入的平均增长率为,则可列方程( )
A.B.
C.D.
6、(4分)在下列条件中,不能确定四边形ABCD为平行四边形的是( ).
A.∠A=∠C,∠B=∠DB.∠A+∠B=180°,∠C+∠D=180°
C.∠A+∠B=180°,∠B+∠C=180°D.∠A=∠B=∠C=90°
7、(4分)如图,□ABCD的对角线相交于点O,下列式子不一定正确的是( )
A.AC=BDB.AB=CDC.∠BAD=∠BCDD.AO=CO
8、(4分)若a<b,则下列结论不一定成立的是( )
A.B.C. D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围_______.
10、(4分)已知m+3n的值为2,则﹣m﹣3n的值是__.
11、(4分)小丽计算数据方差时,使用公式S2=,则公式中=__.
12、(4分)已知关于的方程的解是正数,则的取值范围是__________.
13、(4分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:
如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是_____元.
三、解答题(本大题共5个小题,共48分)
14、(12分)八年级(3)班同学为了解2020年某小区家庭1月份天然气使用情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:
(1)求出a,b的值,并把频数分布直方图补充完整;
(2)求月均用气量不超过30的家庭数占被调查家庭总数的百分比;
(3)若该小区有600户家庭,根据调查数据估计,该小区月均用气量超过40的家庭大约有多少户?
15、(8分)化简求值:,其中;
16、(8分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.
(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;
(2)求证:四边形ABCE是矩形.
17、(10分)如图,在矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,求CF的长.
18、(10分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.
(1)若∠F=62°,求∠D的度数;
(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分解因式:=______.
20、(4分)已知如图,以的三边为斜边分别向外作等腰直角三角形,若斜边,则图中阴影部分的面积为_______.
21、(4分)如果一组数据:5,,9,4的平均数为6,那么的值是_________
22、(4分)某商场为了统计某品牌运动鞋哪个号码卖得最好,则应关注该品牌运动鞋各号码销售数据的平均数、众数、中位数这三个数据中的_____________.
23、(4分)如图,在平面直角坐标系xOy中,直线,分别是函数和的图象,则可以估计关于x的不等式的解集为_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求值,其中a=-2
25、(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:
(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;
(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.
26、(12分)按要求解不等式(组)
(1)求不等式的非负整数解.
(2)解不等式组,并把它的解集在数轴上表示出来.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分别计算自变量为1和2对应的函数值,然后对各选项进行判断.
【详解】
当x=1时,y1=−(x+1) +2=−(1+1) +2=−2;
当x=2时,y=−(x+1) +2=−(2+1) +2=−7;
所以.
故选:A
此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况
2、C
【解析】
由平行四边形的性质得出DC=AB=4,AD=BC=1,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.
【详解】
∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=1.
∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=1+4=2.
故选C.
本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
3、C
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.
【详解】
解:A、∵12+22≠32,∴该三角形不是直角三角形,故此选项不符合题意;
B、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;
C、∵∴该三角形是直角三角形,故此选项符合题意;
D、∵(32)2+(42)2≠(52)2,∴该三角形不是直角三角形,故此选项不符合题意.
故选C.
考查勾股定理的逆定理,:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形.
4、D
【解析】
直接根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知:直线y=1x+1向下平移n个单位长度,得到新的直线的解析式是y=1x+1-n,则1-n=-1,
解得n=1.
故选:D.
本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
5、D
【解析】
利用两种方法算出2019年第一季度的收入,因所得结果是一致的,进而得出等式即可.
【详解】
解:如果2017年第一季度收入为a,则根据题意2019年第一季度的收入为:a(1+22%)(1+30%),设2018年和2019年第一季度营收入的平均增长率为x,根据题意又可得2019年第一季度收入为:,此2种方式结果一样,可得:
a(1+22%)(1+30%)=,即,
故选择:D.
此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
6、B
【解析】
根据平行四边形的多种判定方法,分别分析A、B、C、D选项是否可以证明四边形ABCD为平行四边形,即可解题.
【详解】
A.∠A=∠C,∠B=∠D,根据四边形的内角和为360°,可推出∠A+∠B=180°,所以AD∥BC,同理可得AB∥CD,所以四边形ABCD为平行四边形,故A选项正确;
B.∠A+∠B=180°,∠C+∠D=180°即可证明AD∥BC,条件不足,不足以证明四边形ABCD为平行四边形,故B选项错误.
C.∠A+∠B=180°,∠B+∠C=180°即可证明AB∥CD,AD∥BC,根据平行四边形的定义可以证明四边形ABCD为平行四边形,故C选项正确;
D.∠A=∠B=∠C=90°,则∠D=90°,四个内角均为90°可以证明四边形ABCD为矩形,故D选项正确;
故选B.
7、A
【解析】
根据平行四边形的性质逐项判断即可得.
【详解】
A、平行四边形的对角线不一定相等,则不一定正确,此项符合题意
B、平行四边形的两组对边分别相等,则一定正确,此项不符题意
C、平行四边形的两组对角分别相等,则一定正确,此项不符题意
D、平行四边形的两对角线互相平分,则一定正确,此项不符题意
故选:A.
本题考查了平行四边形的性质,熟记平行四边形的性质是解题关键.
8、D
【解析】
由不等式的性质进行计算并作出正确的判断.
【详解】
A. 在不等式aB. 在不等式aC. 在不等式aD. 当a=−5,b=1时,不等式a2
本题考查不等式的性质,在利用不等式的性质时需注意,在给不等式的两边同时乘以或除以某数(或式)时,需判断这个数(或式)的正负,从而判断改不改变不等号的方向.解决本题时还需注意,要判断一个结论错误,只需要举一个反例即可.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m<1
【解析】
一次函数y=kx+b(k≠2)的k<2时,y的值随x的增大而减小,据此可解答.
【详解】
∵一次函数y=(m-1)x+5,y随着自变量x的增大而减小,
∴m-1<2,
解得:m<1,
故答案是:m<1.
本题考查了一次函数图象与系数的关系.一次函数y=kx+b图象与y轴的正半轴相交⇔b>2,一次函数y=kx+b图象与y轴的负半轴相交⇔b<2,一次函数y=kx+b图象过原点⇔b=2.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.
10、.
【解析】
首先将原式变形,进而把已知代入,再利用二次根式的性质化简进而计算得出答案.
【详解】
解:∵m+3n=,
∴﹣m﹣3n
=
=
=,
故答案为:.
本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和整体代入思想的运用.
11、1
【解析】
分析:根据题目中的式子,可以得到的值,从而可以解答本题.
详解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.
故答案为1.
点睛:本题考查了方差、平均数,解答本题的关键是明确题意,求出相应的平均数.
12、m>-6且m-4
【解析】
试题分析:分式方程去分母转化为整式方程,表示出x,根据x为正数列出关于m的不等式,求出不等式的解集即可确定出m的范围.
试题解析:分式方程去分母得:2x+m=3(x-2),
解得:x=m+6,
根据题意得:x=m+6>0,且m+6≠2,
解得:m>-6,且m≠-4.
考点: 分式方程的解.
13、1.
【解析】
设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,根据商场所获利润=A种衬衫的利润+B种衬衫的利润+C种衬衫的利润-1000,列出方程,然后根据一次函数的性质可求解.
【详解】
解:设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,获得的总利润为y元,
y=(200﹣100)a+(350﹣200)b+(300﹣150)(300﹣a﹣b)﹣1000=﹣50a+44000,
∵购进的每一种衬衫的数量都不少于90件,
∴a≥90,
∴当a=90时,y取得最大值,此时y=﹣50×90+44000=1,
故答案为:1.
一次函数在实际生活中的应用是本题的考点,根据题意列出解析式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)6,,图见解析;(2);(3)1.
【解析】
(1)先求出随机调查的家庭总户数,再根据“频数频率总数”可求出a的值,根据“频率频数总数”可求出b的值,然后补全频数分布直方图即可;
(2)根据总户数和频数分布表中“月均用气量不超过的家庭数”即可得;
(3)先求出“小区月均用气量超过的家庭”的占比,再乘以600即可得.
【详解】
(1)随机调查的家庭总户数为(户)
则
补全频率分布直方图如下所示:
(2)月均用气量不超过的家庭数为(户)
则
答:月均用气量不超过30的家庭数占被调查家庭总数的百分比为;
(3)小区月均用气量超过的家庭占比为
则(户)
答:该小区月均用气量超过40的家庭大约有1户.
本题考查了频数分布表和频数分布直方图,掌握理解频数分布表和频数分布直方图是解题关键.
15、,-4
【解析】
首先通过约分和通分来达到简化分式的目的,然后将代入即可.
【详解】
原式
当时
原式
.
此题主要考查分式的化简求值,熟练掌握,即可解题.
16、 (1)见解析;(2)见解析.
【解析】
(1)根据题意作图即可;
(2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.
【详解】
(1)解:如图所示:E点即为所求;
(2)证明:∵CE⊥BC,
∴∠BCE=90°,
∵∠ABC=90°,
∴∠BCE+∠ABC=180°,
∴AB∥CE,
∴∠ABE=∠CEB,∠BAC=∠ECA,
∵BD为AC边上的中线,
∴AD=DC,
在△ABD和△CED中
,
∴△ABD≌△CED(AAS),
∴AB=EC,
∴四边形ABCE是平行四边形,
∵∠ABC=90°,
∴平行四边形ABCE是矩形.
本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.
17、.
【解析】
证△AEF≌△ADF,推出AE=AD=5,EF=DF,在△ABE中,由勾股定理求出BE=3,求出CE=2,设CF=x,则EF=DF=4﹣x,在Rt△CFE中,由勾股定理得出方程(4﹣x)2=x2+22,求出x即可.
【详解】
∵AF平分∠DAE,
∴∠DAF=∠EAF,
∵四边形ABCD是矩形,
∴∠D=∠C=90°,AD=BC=5,AB=CD=4,
∵EF⊥AE,
∴∠AEF=∠D=90°,
在△AEF和△ADF中,
,
∴△AEF≌△ADF(AAS),
∴AE=AD=5,EF=DF,
在△ABE中,∠B=90°,AE=5,AB=4,由勾股定理得:BE=3,
∴CE=5﹣3=2,
设CF=x,则EF=DF=4﹣x,
在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,
∴(4﹣x)2=x2+22,
x=,
CF=.
本题考查了矩形的性质,全等三角形的性质和判定,角平分线性质,勾股定理等知识点,主要考查学生推理和计算能力,用了方程思想.
18、(1)(2)
【解析】
(1)由四边形ABCD是平行四边形,∠F=62°,易求得∠BAE的度数,又由AB=BE,即可求得∠B的度数,然后由平形四边形的对角相等,即可求得∠D的度数;
(2)根据相似三角形的性质求出△FEC与△FAD的相似比,得到其面积比,再找到△FEC与平行四边形的关系,求出平行四边形的面积.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAF=∠F=62°,
∵AB=BE,
∴∠AEB=∠BAE=62°,
∴∠B=180°-∠BAE-∠AEB=56°,
∵在平行四边形ABCD中,∠D=∠B,
∴∠D=56°.
(2)∵DC∥AB,
∴△CEF∽△BEA.
∵BE=3EC
∴,
∵S△EFC=1.
∴S△ABE=9a,
∵
∴
∴
∴
∵
∴
此题考查了平行四边形的性质与相似三角形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x(x+2)(x﹣2).
【解析】
试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
考点:提公因式法与公式法的综合运用;因式分解.
20、50
【解析】
根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.
【详解】
解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
S阴影=S△AHC+S△BFC+S△AEB=
=50
故答案为:50.
本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.
21、6
【解析】
根据平均数的定义,即可求解.
【详解】
根据题意,得
解得
故答案为6.
此题主要考查平均数的求解,熟练掌握,即可解题.
22、众数
【解析】
根据题意可得:商场应该关注鞋的型号的销售量,特别是销售量最大的鞋型号即众数.
【详解】
某商场应该关注的各种鞋型号的销售量,特别是销售量最大的鞋型号,由于众数是数据中出现次数最多的数,故最应该关注的是众数.
故答案为:众数.
本题考查了统计的有关知识,主要包括平均数、中位数、众数和极差.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
23、x <-2
【解析】
【分析】根据函数的图象进行分析,当l1的图象在l2的上方时,x的取值范围就是不等式的解集.
【详解】由函数图象可知,当x<-2时,l1的图象在l2的上方.
所以,的解集为x<-2.
故答案为x<-2
【点睛】本题考核知识点:一次函数与不等式.解题关键点:从函数图象分析函数值的大小.
二、解答题(本大题共3个小题,共30分)
24、,原式=-5;
【解析】
先把除法运算转化为乘法运算,再把分子分母运用完全平方公式和平方差公式因式分解,约去公因式,化成最简形式,再把的值代入求值.
【详解】
原式
,
当时,原式.
这道求代数式值的题目,不应考虑把的值直接代入,通常做法是先把代数式化简,把除法转换为乘法,约去分子分母中的公因式,然后再代入求值.
25、(1)作图见解析;(2)作图见解析.
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用旋转的性质得出对应点位置进而得出答案.
【详解】
(1)如图所示:△A1B1C1是所求的三角形.
(2)如图所示:△A2B2C1为所求作的三角形.
此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.
26、(1)非负整数解为1、2、3、4;(2)-3<x≤1,数轴上表示见解析
【解析】
(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
(1)5(2x+1)≤3(3x-2)+15,
10x+5≤9x-6+15,
10x-9x≤-6+15-5,
x≤4,
则不等式的非负整数解为1、2、3、4;
(2)解不等式2(x-3)<4x,得:x>-3,
解不等式,得:x≤1,
则不等式组的解集为-3<x≤1,
将不等式组的解集表示在数轴上如下:
考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
题号
一
二
三
四
五
总分
得分
型号
A
B
C
进价(元/件)
100
200
150
售价(元/件)
200
350
300
月均用气量x()
频数(户)
频率
0<x≤10
4
0.08
10<x≤20
a
0.12
20<x≤30
16
0.32
30<x≤40
12
b
40<x≤50
10
0.20
50<x≤60
2
0.04
湖北省黄冈市2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份湖北省黄冈市2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届湖北省武汉市新观察数学九年级第一学期开学统考试题【含答案】: 这是一份2025届湖北省武汉市新观察数学九年级第一学期开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届湖北省武汉市江汉区数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2025届湖北省武汉市江汉区数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。