终身会员
搜索
    上传资料 赚现金

    湖北省武汉市外国语学校2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】

    立即下载
    加入资料篮
    湖北省武汉市外国语学校2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】第1页
    湖北省武汉市外国语学校2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】第2页
    湖北省武汉市外国语学校2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉市外国语学校2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】

    展开

    这是一份湖北省武汉市外国语学校2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
    A.2B.3C.D.
    2、(4分)如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形( )
    A.∠1=∠2B.BE=DFC.∠EDF=60°D.AB=AF
    3、(4分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中小明离家的距离y(km)与时间x(min)之间的对应关系.根据图象,下列说法中正确的是( )
    A.小明吃早餐用了17min
    B.食堂到图书馆的距离为0.8km
    C.小明读报用了28min
    D.小明从图书馆回家的速度为0.8km/min
    4、(4分)若,若,则的度数是( )
    A.B.C.D.
    5、(4分)在下列各式中,是分式的有( )
    A.2个B.3个C.4个D.5个
    6、(4分)在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1>y2,则k取值范围是
    ( )
    A.k≥2B.k>2C.k≤2D.k<2
    7、(4分)若点P(2m+1,)在第四象限,则m的取值范围是( )
    A.B.C.D.
    8、(4分)在20km的环湖越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如右上图所示,根据图中提供的信息,下列说法中错误的有( )
    ①出发后1小时,两人行程均为10km; ②出发后1.5小时,甲的行程比乙多2km;
    ③两人相遇前,甲的速度小于乙的速度; ④甲比乙先到达终点.
    A.1个B.2个C.3个D.4个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:
    根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________.
    10、(4分)如图,F是△ABC内一点,BF平分∠ABC且AF⊥BF,E是AC中点,AB=6,BC=8,则EF的长等于____.
    11、(4分)如图,已知反比例函数的图象经过点,若在该图象上有一点,使得,则点的坐标是_______.
    12、(4分)若,则__________.
    13、(4分)元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程 (千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)化简:()÷并解答:
    (1)当x=1+时,求原代数式的值;
    (2)原代数式的值能等于﹣1吗?为什么?
    15、(8分)已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.
    求证:四边形ECCD是矩形.
    16、(8分)先阅读下面的材料,再解答下面的问题:如果两个三角形的形状相同,则称这两个三角形相似.如图1,△ABC与△DEF形状相同,则称△ABC与△DEF相似,记作△ABC∽△DEF.那么,如何说明两个三角形相似呢?我们可以用“两角分别相等的三角形相似”加以说明.用数学语言表示为:
    如图1:在△ABC与△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF.
    请你利用上述定理解决下面的问题:
    (1)下列说法:①有一个角为50°的两个等腰三角形相似;②有一个角为100°的两个等腰三角形相似;③有一个锐角相等的两个直角三角形相似;④两个等边三角形相似.其中正确的是______(填序号);
    (2)如图2,已知AB∥CD,AD与BC相交于点O,试说明△ABO∽△DCO;
    (3)如图3,在平行四边形ABCD中,E是DC上一点,连接AE.F为AE上一点,且∠BFE=∠C,求证:△ABF∽△EAD.
    17、(10分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:
    (1)写出这15人该月加工零件数的平均数、中位数和众数.
    (2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?
    18、(10分)先化简,再求值: ,其中x=
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)要使分式的值为0,则x的值为____________.
    20、(4分)已知一次函数y=﹣2x+5,若﹣1≤x≤2,则y的最小值是_____.
    21、(4分)如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.
    22、(4分)商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打___________折销售
    23、(4分)如图,在正方形ABCD中,对角线AC,BD交于点O,E为OB上的点,∠EAB=15°,若OE=,则AB的长为__.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解不等式组,把解集表示在数轴上并写出该不等式组的所有整数解.
    25、(10分)如图,在边长为1个单位长度的小正方形组成的两个中,点都是格点.
    (1)将向左平移6个单位长度得到.请画出;
    (2)将绕点按逆时针方向旋转得到,请画出.
    26、(12分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).
    ①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1;
    ②以原点O为对称中心,再画出与△ABC关于原点对称的△A2B2C2,并写出点C2的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    分析:连接EF交AC于点M,由菱形的性质可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理和解直角三角形的性质求解即可.
    详解:如图,连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=10,且tan∠BAC=;在Rt△AME中,AM= AC=5 ,tan∠BAC=,可得EM= ;在Rt△AME中,由勾股定理求得AE= =1.2.
    故选:B.
    点睛:此题主要考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定与性质及锐角三角函数的知识,综合运用这些知识是解题关键.
    2、B
    【解析】
    由正方形的性质,可判定△CDF≌△CBF,则BF=FD=BE=ED,故四边形BEDF是菱形.
    【详解】
    由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,
    ∴△CDF≌△CBF,
    ∴BF=FD,
    同理,BE=ED,
    ∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.
    故选B.
    考查了菱形的判定,解题关键是灵活运用全等三角形的判定和性质,及菱形的判定.
    3、A
    【解析】
    根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.
    【详解】
    解;由图象可得:小明吃早餐用了25﹣8=17min,故选项A正确;
    食堂到图书馆的距离为0.8﹣0.6=0.2km,故选项B错误;
    小明读报用了58﹣28=30min,故选项C错误;
    小明从图书馆回家的速度为0.8÷(68﹣58)=0.08km/min,故选项D错误.
    故选A.
    本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    4、A
    【解析】
    根据相似三角形的对应角相等可得∠D=∠A.
    【详解】
    ∵△ABC∽△DEF,∠A=50°,
    ∴∠D=∠A=50°.
    故选:A.
    此题考查相似三角形的性质,熟记相似三角形的对应角相等是解题的关键.
    5、B
    【解析】
    依据分式的定义即可判断.
    【详解】
    (x+3)÷(x-1)=,
    ,(x+3)÷(x-1)=,这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.
    故式子中是分式的有3个.
    故选:B.
    此题考查了分式的定义,熟练掌握分式的定义是解题得到关键.
    6、B
    【解析】
    分析:根据反比例函数的性质,可得答案.
    详解:由x1<0<x1,y1>y1,得:
    图象位于二四象限,1﹣k<0,解得:k<1.
    故选B.
    点睛:本题考查了反比例函数的性质,利用反比例函数的性质是解题的关键.
    7、C
    【解析】
    点P(2m+1,)在第四象限,故2m+1>0,<0,解不等式可得.
    【详解】
    ∵点P(2m+1,)在第四象限,
    ∴2m+1>0,<0,
    解得:.
    故选:C
    考核知识点:点的坐标和象限.理解点的坐标符号与限项关系.
    8、B
    【解析】
    根据图像所给信息,结合函数图像的实际意义判断即可.
    【详解】
    解:由图像可得出发后1小时,两人行程均为10km,①正确;甲的速度始终为,乙在内,速度为,在内,速度为,所以出发后1.5小时,甲的行程为,而乙的行程为,,所以出发后1.5小时,甲的行程比乙多3km,②错误;相遇前,在内,乙的速度大于甲的速度,在内,乙的速度小于甲的速度,③ 错误;由图像知,甲2小时后到达终点,而乙到达终点花费的时间比甲的长,所以甲比乙先到达终点,④正确.错误的说法有2个.
    故答案为:B
    本题是根据函数图像获取信息,明确函数图像所表达的实际意义是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、队员1
    【解析】
    根据方差的意义结合平均数可作出判断.
    【详解】
    因为队员1和1的方差最小,队员1平均数最小,所以成绩好,
    所以队员1成绩好又发挥稳定.
    故答案为:队员1.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    10、1.
    【解析】
    根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=4且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=4,由EF=DE-DF可得答案.
    【详解】
    ∵AF⊥BF,
    ∴∠AFB=90°,
    ∵AB=6,D为AB中点,
    ∴DF=AB=AD=BD=3,
    ∴∠ABF=∠BFD,
    又∵BF平分∠ABC,
    ∴∠ABF=∠CBF,
    ∴∠CBF=∠DFB,
    ∴DE∥BC,
    ∴△ADE∽△ABC,
    ∴,即
    解得:DE=4,
    ∴EF=DE-DF=1,
    故答案为:1.
    本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.
    11、
    【解析】
    作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=4,A′F=AE=3,即A′(4,-3),求出线段AA′的中垂线的解析式,利用方程组确定交点坐标即可.
    【详解】
    解:如图,作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=5,A′F=AE=4,即A′(5,-4).
    ∵反比例函数的图象经过点A(4,5),
    所以由勾股定理可知:OA=,
    ∴k=4×5=20,
    ∴y=,
    ∴AA′的中点K(),
    ∴直线OK的解析式为y=x,
    由,
    解得或,
    ∵点P在第一象限,
    ∴P(),
    故答案为().
    本题考查反比例函数图象上点的坐标特征,一次函数的应用等知识,解题的关键是学会构造全等三角形解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考填空题中的压轴题.
    12、
    【解析】
    利用设k法,分别将a,b都设出来,再代入中化简即可得出答案.
    【详解】
    解:设a=2k,b=5k

    故答案为:.
    本题考查了比例的性质,属于基础知识,比较简单.
    13、20
    【解析】
    先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.
    【详解】
    解:设y与x之间的函数关系式为y=kx+b,由函数图象,得

    解得: ,
    则y=﹣0.1x+1.
    当x=150时,
    y=﹣0.1×150+1=20(升).
    故答案为20
    本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)+1(2)不能
    【解析】
    将原式进行化简可得出原式=.
    (1)代入x=1+,即可求出原式的值;
    (2)令原式等于﹣1,可求出x=0,由原式中除数不能为零,可得出原代数式的值不能等于﹣1.
    【详解】
    解:原式=[﹣]•=(﹣)••.
    (1)当x=1+时,原式==+1.
    (2)不能,理由如下:
    解=﹣1,得:x=0,
    ∵当x=0时,原式中除数=0,∴原代数式的值不能等于﹣1.
    本题考查了分式的化简求值,将原式化简为是解题的关键.
    15、见解析
    【解析】
    首先利用中位线定理证得CG∥BD,CG=BD,然后根据四边形ABCD是菱形得到AC⊥BD,DE=BD,从而得到∠DEC=90°,CG=DE,即可得到四边形ECGD是矩形.
    【详解】
    证明:∵CF=BC,
    ∴C点是BF中点,
    ∵点G是DF中点,
    ∴CG是△DBF中位线,
    ∴CG∥BD,CG=BD,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,DE=BD,
    ∴∠DEC=90°,CG=DE,
    ∴四边形ECGD是矩形.
    本题考查了矩形的判定、菱形的性质及三角形的中位线定理,解题的关键是牢记矩形的判定方法,难度不大.
    16、(1)②③④;(2)见解析;(3)见解析
    【解析】
    (1)由于50°的角可作为等腰三角形的顶角,也可以作为底角,由此可判断①;而100°的角只能作为等腰三角形的顶角,故可判断②;根据直角三角形的性质可判断③;根据等边三角形的性质可判断④,进而可得答案;
    (2)根据平行线的性质和材料提供的方法解答即可;
    (3)根据平行四边形的性质和平行线的性质可得∠BAE=∠AED,∠D+∠C=180°,然后根据已知和补角的性质可得∠D=∠AFB,进而可得结论.
    【详解】
    解:(1)①由于50°的角可作为等腰三角形的顶角,也可以作为底角,所以有一个角为50°的两个等腰三角形不一定相似,所以①错误;
    ②由于100°的角只能作为等腰三角形的顶角,所以有一个角为100°的两个等腰三角形一定相似,所以②正确;
    ③有一个锐角相等的两个直角三角形一定相似,所以③正确;
    ④两个等边三角形一定相似,所以④正确.
    故答案为②③④;
    (2)∵AB∥CD,∴∠A=∠D,∠B=∠C,
    ∴△ABO∽△DCO;
    (3)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AD∥BC,
    ∴∠BAE=∠AED,∠D+∠C=180°,
    ∵∠AFB+∠BFE=180°,∠BFE=∠C,
    ∴∠D=∠AFB,
    ∴△ABF∽△EAD.
    本题以阅读理解的形式考查了平行线的性质、平行四边形的性质和相似三角形的判定,解题的关键是正确理解题意、熟练掌握上述基本知识.
    17、 (1)平均数:260(件) 中位数:240(件) 众数:240(件)(2)不合理
    【解析】
    试题解析:解:(1)这15个人的平均数是:,
    中位数是:240,
    众数是240;
    (2)不合理,因为这15个人中只有4个人可以完成任务,大部分人都完不成任务.
    考点:平均数、中位数、众数
    点评:本题主要考查了平均数、中位数、众数. 平均数、中位数、众数都反映了一组数据的集中趋势,但是平均数容易受到这组数据中的极端数数的影响,所以中位数和众数更具有代表性.
    18、,
    【解析】
    将原式进行因式分解化成最简结果,将x代入其中,计算得到结果.
    【详解】
    解:原式=
    =
    =
    因为x= ,所以原式= .
    考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-2.
    【解析】
    分式的值为零的条件是分子等于0且分母不等于0,
    【详解】
    因为分式的值为0,
    所以x+2=0且x-1≠0,
    则x=-2,
    故答案为-2.
    20、1
    【解析】
    根据一次函数的性质得出其增减性,进而解答即可.
    【详解】
    解:∵一次函数y=﹣2x+5,k=﹣2<0,
    ∴y随x的增大而减小,
    ∵﹣1≤x≤2,
    ∴当x=2时,y的最小值是1,
    故答案为:1
    此题主要考查了一次函数,根据一次函数的性质得出其增减性是解答此题的关键.
    21、﹣1
    【解析】
    首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BG,AD=BC,
    ∴∠DAE=∠G=30°,
    ∵DE=EC,∠AED=∠GEC,
    ∴△ADE≌△GCE,
    ∴AE=EG=AD=CG=1,
    在Rt△BFG中,∵FG=BG•cs30°=,
    ∴EF=FG-EG=-1,
    故答案为-1.
    本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.
    22、8
    【解析】
    设该文具盒实际价格可打x折销售,根据利润率不低于20%列不等式进行求解即可得.
    【详解】
    设该文具盒实际价格可打x折销售,由题意得:
    6×-4≥4×20%,
    解得:x≥8,
    故答案为8.
    本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解题的关键.
    23、3
    【解析】
    根据正方形的性质得到OA=OB,∠AOB=90°,则△OAB为等腰直角三角形,所以∠OAE=45°-∠EAB=30°,在Rt△AOE中利用含30度的直角三角形三边的关系得到OA=3,然后利用等腰直角三角形的性质得到AB的长.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴OA=OB,∠AOB=90°,
    ∴∠OAB=45°,
    ∴∠OAE=45°-∠EAB=45°-15°=30°,
    在Rt△AOE中,OA=OE=×=3,
    在Rt△OAB中,AB=OA=3.
    故答案为3.
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.
    二、解答题(本大题共3个小题,共30分)
    24、﹣1、﹣1、0、1、1.
    【解析】
    根据不等式组的计算方法,首先单个计算不等式,在采用数轴的方法,求解不等式组即可.
    【详解】
    解:
    解不等式(1)得:x<3,
    解不等式(1)得:x≥﹣1,
    它的解集在数轴上表示为:
    ∴原不等式组的解集为:﹣1≤x<3,
    ∴不等式组的整数解为:﹣1、﹣1、0、1、1.
    本题主要考查不等式组的整数解,关键在于数轴上等号的表示.
    25、(1)图见详解;(1)图见详解.
    【解析】
    (1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;
    (1)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A1B1C1.
    【详解】
    解:(1)如图所示:△A1B1C1,即为所求;
    (1)如图所示:△A1B1C1,即为所求.
    此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.
    26、①见解析;②见解析,点C2坐标为(﹣4,1).
    【解析】
    ①根据平移规律得出对应点位置即可;
    ②利用关于原点对称点的坐标性质得出对应点位置进而得出答案.
    【详解】
    ①如图所示,△A1B1C1即为所求.
    ②如图所示,△A2B2C2即为所求,点C2坐标为(﹣4,1).
    此题主要考查了平移变换以及旋转变换和三角形面积等知识,根据题意得出对应点位置是解题关键.
    题号





    总分
    得分
    批阅人
    队员1
    队员2
    队员3
    队员4
    平均数(秒)
    51
    50
    51
    50
    方差(秒)
    3.5
    3.5
    14.5
    15.5
    加工件数
    540
    450
    300
    240
    210
    120
    人数
    1
    1
    2
    6
    3
    2

    相关试卷

    湖北省荆门市2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份湖北省荆门市2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2024年湖北省武汉市四校联考九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份2024年湖北省武汉市四校联考九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省济南外国语学校数学九年级第一学期开学统考模拟试题【含答案】:

    这是一份2024-2025学年山东省济南外国语学校数学九年级第一学期开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map