湖北省武汉市武昌区2024年数学九年级第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在反比例函数 y 图象的每个象限内,y 随 x 的增大而减少,则 k 值可以是( )
A.3B.2C.1D.﹣1
2、(4分)如图,正比例函数的图像与反比例函数的图像交于A、B两点.点C在轴负半轴上,AC=AO,△ACO的面积为8. 则的值为()
A.-4B.﹣8C.4D.8
3、(4分)在下列四个函数中,是一次函数的是( )
A.yB.y=x2+1C.y=2x+1D.y+6
4、(4分)下列多边形中,不能够单独铺满地面的是( )
A.正三角形B.正方形C.正五边形D.正六边形
5、(4分)如图,直线与=-x+3相交于点A,若<,那么( )
A.x>2B.x<2C.x>1D.x<1
6、(4分)如果点E、F、G、H分别是四边形ABCD四条边的中点,若EFGH为菱形,则四边形应具备的下列条件中,不正确的个数是( )
①一组对边平行而另一组对边不平行; ②对角线互相平分;③对角线互相垂直;④对角线相等
A.1个B.2个C.3个D.4个
7、(4分)下列等式正确的是( )
A.B.C.D.
8、(4分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是( )
A.120°B.130°C.140°D.150°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.
10、(4分)如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____.
11、(4分)多项式x2+mx+5因式分解得(x+5)(x+n),则m=_____,n=_____.
12、(4分)从某市5000名初一学生中,随机地抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是__________.
13、(4分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)今年5月19日为第29个“全国助残日”.我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).
(1)填空:_________,_________.
(2)补全频数分布直方图.
(3)该校有2000名学生,估计这次活动中爱心捐款额在的学生人数.
15、(8分)李师傅去年开了一家商店.今年1月份开始盈利,2月份盈利3000元,4月份的盈利达到4320元,且从2月到4月,每月盈利的平均增长率都相同.
(1)求每月盈利的平均增长率;
(2)按照这个平均增长率,预计5月份这家商店的盈利可达到多少元?
16、(8分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.
(1)求证:AE=BF;
(2)当∠BAG=30°,且AB=2时,求EF-FG的值.
17、(10分)如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)将△AOB向右平移4个单位长度得到△A1O1B1,请画出△A1O1B1;
(2)以点A为对称中心,请画出△ AOB关于点A成中心对称的△ A O2 B2,并写点B2的坐标;
(1)以原点O为旋转中心,请画出把△AOB按顺时针旋转90°的图形△A2 O B1.
18、(10分)如图,反比例函数y=(n为常数,n≠0)的图象与一次函数y=kx+8(k为常数,k≠0)的图象在第三象限内相交于点D(﹣,m),一次函数y=kx+8与x轴、y轴分别相交于A、B两点.已知cs∠ABO=.
(1)求反比例函数的解析式;
(2)点P是x轴上的动点,当△APC的面积是△BDO的面积的2倍时,求点P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的方程(m-2)x|m|+2x-1=0是一元二次方程,则m=________.
20、(4分)如图, x轴正半轴上,顶点D在y轴正半轴上,反比例函数y= (x>0)的图象与正比例函数y=x的图象交于点A.BC边经过点A,CD边与反比例函数图象交于点E,四边形OACE的面积为6.则点A的坐标为_____;
21、(4分)从一副扑克牌中任意抽取 1 张:①这张牌是“A”;②这张牌是“红心”;③这张牌是“大王”.其中发生的可能性最大的事件是_____.(填序号)
22、(4分)如图,在直角坐标系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为 ,点An的坐标为 .
23、(4分)若反比例函数y=的图象经过点(2,﹣3),则k=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.
(1)本次抽测的男生有 人;
(2)请你将图1的统计图补充完整;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中,估计有多少人体能达标?
25、(10分)某公司开发出一款新的节能产品,该产品的成本价为8元/件,该产品在正式投放市场前通过代销点进行了为期一个月30天的试销售,售价为13元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的图象,图中的折线表示日销量(件)与销售时间(天)之间的函数关系.
(1)直接写出与之间的函数解析式,并写出的取值范围.
(2)若该节能产品的日销售利润为(元),求与之间的函数解析式.日销售利润不超过1950元的共有多少天?
(3)若,求第几天的日销售利润最大,最大的日销售利润是多少元?
26、(12分)如图,△ABC中,D是BC上的一点.若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,则可得答案 .
【详解】
根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,所以k>2,结合选项选择A.
本题考查反比例函数图象的性质,解题的关键是掌握反比例函数图象的性质.
2、B
【解析】
根据等腰三角形的性质及反比例函数k的几何意义即可求解.
【详解】
过点A作AE⊥x轴,
∵AC=AO,
∴CE=EO,∴S△ACO=2 S△ACE
∵△ACO的面积为8.
∴=8,
∵反比例函数过二四象限,
∴k=-8
故选B
此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数k的性质.
3、C
【解析】
依据一次函数的定义进行解答即可.
【详解】
解:A、y=是反比例函数,故A错误;
B、y=x2+1是二次函数,故B错误;
C、y=2x+1是一次函数,故C正确;
D、y=+6中,自变量x的次数为﹣1,不是一次函数,故D错误.
故选C.
本题主要考查的是一次函数的定义,掌握一次函数的定义是解题的关键.
4、C
【解析】
由镶嵌的条件知,在一个顶点处各个内角和为360°.
【详解】
∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;
∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;
∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;
∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.
故选C.
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
5、B
【解析】
从图象上得出,当<时,x<1.故选B.
6、C
【解析】
因为四边相等才是菱形,因为E、F、G、H是四边形ABCD四条边的中点,那么菱形的四条边都是对角线的中位线,所以对角线一定要相等.
【详解】
解:连接AC,BD,
∵四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为菱形,
∴EF=FG=GH=EH,
∵FG=EH=DB,HG=EF=AC,
∴要使EH=EF=FG=HG,
∴BD=AC,
∴四边形ABCD应具备的条件是BD=AC,
故选:C.
此题主要考查了三角形中位线的性质以及菱形的判定方法,正确运用菱形的判定定理是解决问题的关键.
7、B
【解析】
根据平方根、算术平方根的求法,对二次根式进行化简即可.
【详解】
A.=2,此选项错误;
B.=2,此选项正确;
C. =﹣2,此选项错误;
D.=2,此选项错误;
故选:B.
本题考查了二次根式的化简和求值,是基础知识比较简单.
8、C
【解析】
由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.
【详解】
∵四边形ABCD是菱形,
∴OB=OD,AC⊥BD,∠ADC=∠ABC,
∵DH⊥AB,
∴OH=OB=BD,
∵∠DHO=20°,
∴∠OHB=90°﹣∠DHO=70°,
∴∠ABD=∠OHB=70°,
∴∠ADC=∠ABC=2∠ABD=140°,
故选C.
本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.
【详解】
如图,作AE⊥OB于E,A′H⊥OB于H.
∵A(1,),
∴OE=1,AE=,
∴OA==2,
∵△OAB是等边三角形,
∴∠AOB=60°,
∵∠AOA′=15°,
∴∠A′OH=60°﹣15°=45°,
∵OA′=OA=2,H⊥OH,
∴A′H=OH=,
∴(,),
故答案为:(,).
此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.
10、10cm
【解析】
将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,从而求出解题中的AC,连接AB,根据两点之间线段最短可得小蚂蚁爬行的最短路程为此时AB的长,然后根据勾股定理即可求出结论.
【详解】
解:将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,如下图所示:AC=1.5×4=6cm,连接AB,根据两点之间线段最短,
∴小蚂蚁爬行的最短路程为此时AB的长
∵圆柱体的高为8cm,
∴BC=8cm
在Rt△ABC中,AB=cm
故答案为:10cm.
此题考查的是利用勾股定理求最短路径问题,将圆柱的侧面展开,根据两点之间线段最短即可找出最短路径,然后利用勾股定理求值是解决此题的关键.
11、6 1
【解析】
将(x+5)(x+n)展开,得到,使得x2+(n+5)x+5n与x2+mx+5的系数对应相等即可.
【详解】
解: ∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n.
∴.
故答案为:6;1.
12、众数
【解析】
服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.
【详解】
解:由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.
故答案为: 众数.
本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
13、或或1
【解析】
如图所示:
①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;
②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;
③当PA=PE时,底边AE=1;
综上所述:等腰三角形AEP的对边长为或或1;
故答案为或或1.
三、解答题(本大题共5个小题,共48分)
14、(1),.(2)补图见解析;(3)1200人.
【解析】
(1)先根据5≤x<l0的频数及其百分比求出样本容量,再根据各组频数之和等于总人数求出a的值,继而由百分比的概念求解可得;
(2)根据所求数据补全图形即可得;
(3)利用样本估计总体思想求解可得.
【详解】
解:(1)∵样本容量为3÷7.5%=40,
∴a=40-(3+7+10+6)=14,
则b=14÷40×100%=35%,
故答案为:14,35%;
(2)补图如下.
(3)估计这次活动中爱心捐款额在15≤x<25的学生人数约为,
2000×(35%+25%)=1200(人).
答:估计这次活动中爱心捐款额在的学生有1200人.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
15、(1)该商店的每月盈利的平均增长率为20%.(2)5月份盈利为5184元.
【解析】
(1)设该商店的月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.
(2)5月份盈利=4月份盈利×增长率.
【详解】
(1)设该商店的每月盈利的平均增长率为x,根据题意得:
3000(1+x)2=4320,
解得:x1=20%,x2=-2.2(舍去).
(2)由(1)知,该商店的每月盈利的平均增长率为20%,则5月份盈利为:
4320×(1+20%)=5184(元).
答:(1)该商店的每月盈利的平均增长率为20%.
(2)5月份盈利为5184元.
此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-,难度一般.
16、(1)证明见解析;(2)EF-FG=-1.
【解析】
分析:(1)首先根据角与角之间的等量代换得到∠ABF=∠DAE,结合AB=AD,∠AED=∠BFA,利用AAS证明△ABF≌△DAE,即可得到AE=BF;
(2)首先求出BF和AE的长度,然后在Rt△BFG中求出BG=2FG,利用勾股定理得到BG2=FG2+BF2,进而求出FG的长,于是可得EF﹣FG的值.
详解:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=∠BAD=90°.
又∵DE⊥AG,BF∥DE,∴∠AED=∠BFA=90°.
∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AE=BF;
(2)∵∠BAG=30°,AB=2,∠BEA=90°,∴BF=AB=1,AF=,∴EF=AF﹣AE=AF﹣BF=﹣1.
∵BF⊥AG,∠ABG=90°,∠BAG=30°,∴∠FBC=30°,∴BG=2FG,由BG2=FG2+BF2,∴4FG2=FG2+1,∴FG=,∴EF﹣FG=﹣1﹣=﹣1.
点睛:本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理等知识,解答本题的关键是根据AAS证明△ABF≌△DAE,此题难度一般.
17、(1)如图所示:△A1O1B1为所求作的三角形;见解析;(2)如图所示:为所求作的三角形,见解析;(-1,4);(1)如图所示:为所求作的三角形;见解析.
【解析】
(1)先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形;
(2)关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分得特点,找到关键点的对应点,再顺次连接对应点即可得到平移后的图形;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即可得到B点的坐标;
(1)先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到对应点A2O, B1,最后顺次连接,顺次连接得出旋转后的图形.
【详解】
解:(1)如图所示:先将A,B,O三点向右平移4个单位长度,得到A1 ,O1, B1,最后顺次连接,即可得到:为所求作的三角形;
(2)如图所示:先将A,B,O以点A为对称中心,得到A,O2, B2最后顺次连接,即可得到:为所求作的三角形,(-1,4);
(1)如图所示:先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到A2,O, B1,最后顺次连接,即可得到:为所求作的三角形;
本题主要考查了利用旋转变换,平移变换以及中心对称进行作图,解题时注意:关于x轴的对称点的横坐标不变,纵坐标互为相反数.关于y轴的对称点的横坐标互为相反数,纵坐标不变.
18、(1)y=x+1,y=(2)(﹣11,0)或(6,0)
【解析】
(1)求得A(﹣6,0),即可得出一次函数解析式为y=x+1,进而得到D(,﹣2),即可得到反比例函数的解析式为y=;
(2)解方程组求得C(,10),依据△APC的面积是△BDO的面积的2倍,即可得到AP=12,进而得到P(﹣11,0)或(6,0).
【详解】
解:(1)∵一次函数y=kx+1与y轴交于点B,
∴B(0,1).
∵在Rt△AOB中,cs∠ABO=,
∴tan∠BAO=,
∴AO=6,
∴A(﹣6,0).
∵点A在一次函数y=kx+1图象上,
∴k=,
∴一次函数解析式为y=x+1.
∵点D(,m)在一次函数y=kx+1图象上,
∴m=﹣2,
即D(,﹣2),
∵点D(,﹣2)在反比例函数y=图象上,
∴n=2.
∴反比例函数的解析式为y=;
(2)∵点C是反比例函数y=图象与一次函数y=x+1图象的交点,
∴,解得,
∴C(,10).
∵△APC的面积是△BDO的面积的2倍,
∴AP×10=×1×,
∴AP=12,
又∵A(﹣6,0),点P是x轴上的动点,
∴P(﹣11,0)或(6,0).
本题考查反比例函数与一次函数的交点、用待定系数法求函数解析式、三角函数、三角形面积的计算等知识;求出点A和D的坐标是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-2
【解析】
方程(m-2)x|m|+2x-1=0是一元二次方程,可得且m-2≠0,解得m=-2.
20、 (3,2)
【解析】
把反比例函数与正比例函数的解析式组成方程组即可求出A点坐标;
【详解】
∵点A是反比例函数y= (x>0)的图象与正比例函数y=x的图象的交点,
∴,
解得 (舍去)或
∴A(3,2);
故答案为:(3,2)
此题考查反比例函数,解题关键在于把反比例函数与正比例函数的解析式组成方程组
21、②
【解析】
根据可能性等于所求情况与总数情况之比即可解题.
【详解】
解:一副扑克一共有54张扑克牌,A一共有4张,∴这张牌是“A”的概率是 ,
这张牌是“红心”的概率是,
这张牌是“大王”的概率是,
∴其中发生的可能性最大的事件是②.
本题考查了简单的概率计算,属于简单题,熟悉概率公式是解题关键.
22、A4(7,8);An(2n-1-1,2n-1).
【解析】
∵点B1的坐标为(1,1),点B2的坐标为(3,2)
∴由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),
∴直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.
∵A1的纵坐标是:1=20,A1的横坐标是:0=20-1;
A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;
A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,
A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).
∴An的纵坐标是:2n-1,横坐标是:2n-1-1,
即点An的坐标为(2n-1-1,2n-1).
故答案为(7,8);(2n-1-1,2n-1).
23、-1
【解析】
把点A(2,﹣3)代入y=求得k的值即可.
【详解】
∵反比例函数y=的图象经过点(2,﹣3),
∴﹣3=,
解得,k=﹣1,
故答案为:﹣1.
本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)50;(2)5次的人数有16人(3)252
【解析】
(1)由引体向上的次数为4次的人数除以所占的百分比即可求出抽测的男生数;
(2)求出次数为5次的人数,补全统计图即可;
(3)求出5次以上(含5次)人数占的百分比,乘以350即可得到结果.
【详解】
(1)根据题意得:10÷20%=50(人),
则本次抽测的男生有50人;
故答案为50人;
(2)5次的人数为50-(4+10+14+6)=16(人),
补全条形统计图,如图所示:
(3)根据题意得:人,
则该校350名九年级男生中估计有252人体能达标.
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
25、(1);(2),18;(3)第5日的销售利润最大,最大销售利润为1650元.
【解析】
(1)根据题意和函数图象中的数据,可利用待定系数法求得y与x的函数关系式,并写出x的取值范围;
(2)根据题意和(1)中的函数关系式可以写出w与x的函数关系式,求得日销售利润不超过1950元的天数;
(3)根据题意和(2)中的关系式分别求出当时和当时的最大利润,问题得解.
【详解】
(1)当1≤x≤10时,设y与x的函数关系式为y=kx+b,
则 ,解得:,
即当1≤x≤10时,y与x的函数关系式为y=−30x+480,
当10<x≤30时,设y与x的函数关系式为y=mx+n,
则 ,解得:
即当10<x≤30时,y与x的函数关系式为y=21x−30,
综上可得, ;
(2)由题意可得:
令,解得.
令,解得.
∴(天).
答:日销售利润不超过1950元的共有18天.
(3)①当时,,∴当时,.
②当时,,∴当时,.
综上所述:当时,.
即第5日的销售利润最大,最大销售利润为1650元.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.
26、84
【解析】
根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
【详解】
解:在△ABD中,
∵BD2+AD2=62+82=100=AB2,
∴△ABD是直角三角形,
∴△ADC也是直角三角形
∴DC2+AD2=AC2,即DC2=AC2-AD2=172-82=225,
∴DC=15 .
∴BC=BD+DC=6+15=21,
∴S△ABC==84 .
此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.
题号
一
二
三
四
五
总分
得分
批阅人
湖北省武汉市武昌区八校2024年九年级数学第一学期开学达标测试试题【含答案】: 这是一份湖北省武汉市武昌区八校2024年九年级数学第一学期开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省武汉市青山区2025届数学九年级第一学期开学监测模拟试题【含答案】: 这是一份湖北省武汉市青山区2025届数学九年级第一学期开学监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省武汉市武昌区南湖中学九年级数学第一学期开学学业质量监测试题【含答案】: 这是一份2024年湖北省武汉市武昌区南湖中学九年级数学第一学期开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。