湖北省武汉市武汉外学校2024-2025学年九上数学开学考试模拟试题【含答案】
展开
这是一份湖北省武汉市武汉外学校2024-2025学年九上数学开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于x的分式方程无解,则m的值为( )
A.一l.5B.1C.一l.5或2D.一0.5或一l.5
2、(4分)某地2017年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2019年在2017年的基础上增加投入资金1600万元.设从2017年到2019年该地投入异地安置资金的年平均增长率为x,则下列方程正确的是( )
A.1280(1+x)=1600B.1280(1+2x)=1600
C.1280(1+x)2=2880D.1280(1+x)+1280(1+x)2=2880
3、(4分)某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )
A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分
4、(4分)下列各式中,运算正确的是
A.B.C.D.
5、(4分)在直角三角形中,两条直角边的长分别为12和5,则斜边上的中线长是( )
A.6.5B.8.5C.13D.
6、(4分)己知一个多边形的内角和是360°,则这个多边形是( )
A.四边形B.五边形C.六边形D.七边形
7、(4分)将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为( )
A.(2,1) B.(﹣2,﹣1) C.(﹣2,1) D.(2,﹣1)
8、(4分)下列图形中,既是中心对称图形也是轴对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,D,E分别是△ABC的边AB,AC的中点,且BC=7,则DE=______.
10、(4分)若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是 .
11、(4分)平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,点E在AB上且AE:EB=1:2,点F是BC中点,过D作DP⊥AF于点P,DQ⊥CE于点Q,则DP:DQ=_______.
12、(4分)如图,在平面直角坐标系中,已知点、、的坐标分别为,,.若点从点出发,沿轴正方向以每秒1个单位长度的速度向点移动,连接并延长到点,使,将线段绕点顺时针旋转得到线段,连接.若点在移动的过程中,使成为直角三角形,则点的坐标是__________.
13、(4分)分解因式b2(x﹣3)+b(x﹣3)=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算(2+1)(2﹣1)﹣(1﹣2)2
15、(8分)如图,在四边形纸片ABCD中,∠B=∠D=90°,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都和点G重合,∠EAF=45°.
(1)求证:四边形ABCD是正方形;
(2)求证:三角形ECF的周长是四边形ABCD周长的一半;
(3)若EC=FC=1,求AB的长度.
16、(8分)化简求值:,其中.
17、(10分)在平面直角坐标系中,点A的坐标为,以线段OA为边作等边三角形,使点B落在第四象限内,点C为x正半轴上一动点,连接BC,以线段BC为边作等边三角形,使点D落在第四象限内.
(1)如图1,在点C运动的过程巾,连接AD.
①和全等吗?请说明理由:
②延长DA交y轴于点E,若,求点C的坐标:
(2)如图2,已知,当点C从点O运动到点M时,点D所走过的路径的长度为_________
18、(10分)已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC=60°,∠EAF的两边分别与边BC,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为: .
(2)如图2,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;
(3)求△AEF周长的最小值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知函数和的图象交于点P, 则根据图象可得,关于的二元一次方程组的解是_____________。
20、(4分)如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东方向.问:小岛C于渔船的航行方向的距离是________________海里(结果可用带根号的数表示).
21、(4分)已知直角三角形的两边长分别为3、1.则第三边长为________.
22、(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为1,5,1,1.则最大的正方形E的面积是___.
23、(4分)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出
①AB=__________;
②CD=_______________(提示:过A作CD的垂线);
③BC=_______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图①, 已知△ABC中, ∠BAC=90°, AB="AC," AE是过A的一条直线, 且B、C在AE的异侧, BD⊥AE于D, CE⊥AE于E.
(1)求证: BD=DE+CE.
(2)若直线AE绕A点旋转到图②位置时(BDCE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请直接写出结果, 不需证明.
(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系.
25、(10分)已知一次函数y=﹣x+1.
(1)在给定的坐标系中画出该函数的图象;
(2)点M(﹣1,y1),N(3,y2)在该函数的图象上,试比较y1与y2的大小.
26、(12分)甲、乙两人同时从P地出发步行分别沿两个不同方向散步,甲以的速度沿正北方向前行;乙以的速度沿正东方向前行,
(1)过小时后他俩的距离是多少?
(2)经过多少时间,他俩的距离是?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
方程两边都乘以x(x-1)得:(2m+x)x-x(x-1)=2(x-1),即(2m+1)x=-6,①
①∵当2m+1=0时,此方程无解,∴此时m=-0.2,
②∵关于x的分式方程无解,∴x=0或x-1=0,即x=0,x=1.
当x=0时,代入①得:(2m+1)×0=-6,此方程无解;
当x=1时,代入①得:(2m+1)×1=-6,解得:m=-1.2.
∴若关于x的分式方程无解,m的值是-0.2或-1.2.故选D.
2、C
【解析】
根据2017年及2019年该地投入异地安置资金,即可列出关于x的一元二次方程.
【详解】
解:设从2017年到2019年该地投入异地安置资金的年平均增长率为x
根据题意得:1280(1+x)2=1280+1600=2880.
故选C.
本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.
3、C
【解析】
分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
4、D
【解析】
根据合并同类项法则、同底数幂除法法则、幂的乘方的运算法则逐项进行判断即可得.
【详解】
A、,故A选项错误;
B、、不是同类项,不能合并,故B选项错误;
C、,故C选项错误;
D、,故D选项正确,
故选D.
本题考查了合并同类项、同底数幂除法、幂的乘方等,熟练掌握各运算的运算法则是解题的关键.
5、A
【解析】
利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.
【详解】
如图,在△ABC中,∠C=90°,AC=12,BC=1
则根据勾股定理知,AB==13
∵CD为斜边AB上的中线
∴CD=AB=6.1.
故选:A.
本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.
6、A
【解析】
根据多边形的内角和公式即可求解.
【详解】
设边数为n,则(n-2)×180°=360°,
解得n=4
故选A.
此题主要考查多边形的内角和,解题的关键是熟知公式的运用.
7、C
【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.
详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,
∴点B的坐标是(-2,1).
故选:C.
点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.
8、D
【解析】
轴对称图形是把一个图形沿一条直线折叠,直线两旁的部分能够互相重合,判断四个图形,看看哪些是轴对称图形;中心对称图形是把一个图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合,判断四个图形,看看哪些是中心对称图形;综合上述分析,即可选出既是中心对称图形又是轴对称图形的图形,从而解答本题.
【详解】
A、是轴对称图形,但不是中心对称图形,不符合题意;
B、不是轴对称图形,是中心对称图形,不符合题意;
C、是轴对称图形,但不是中心对称图形,不符合题意;
D、既是中心对称图形,又是轴对称图形,符合题意.
故选D.
此题考查中心对称图形和轴对称图形,解决本题的关键是熟练地掌握中心对称图形和轴对称图形的判断方法;
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3.1
【解析】
根据三角形的中位线定理解答即可.
【详解】
解:∵D,E分别是△ABC的边AB,AC的中点,且BC=7,
∴.
故答案为:3.1.
本题考查了三角形的中位线定理,属于基本题型,熟练掌握该定理是解题关键.
10、k>0
【解析】
试题分析:一次函数的图象有四种情况:
①当,时,函数的图象经过第一、二、三象限;
②当,时,函数的图象经过第一、三、四象限;
③当,时,函数的图象经过第一、二、四象限;
④当,时,函数的图象经过第二、三、四象限。
由题意得,y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,故。
11、2:
【解析】
【分析】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据三角形的面积和平行四边形的面积得出S△DEC=S△DFA=S平行四边形ABCD,求出AF×DP=CE×DQ,设AB=3a,BC=2a,则BF=a,BE=2a,BN=a,BM=a,FN=a,CM=a,求出AF=a,CE=2a,代入求出即可.
【详解】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,
∵根据三角形的面积和平行四边形的面积得:S△DEC=S△DFA=S平行四边形ABCD,
即AF×DP=CE×DQ,
∴AF×DP=CE×DQ,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∵∠DAB=60°,
∴∠CBN=∠DAB=60°,
∴∠BFN=∠MCB=30°,
∵AB:BC=3:2,
∴设AB=3a,BC=2a,
∵AE:EB=1:2,F是BC的中点,
∴BF=a,BE=2a,
BN=a,BM=a,
由勾股定理得:FN=a,CM=a,
AF==a,
CE==2a,
∴a•DP=2a•DQ,
∴DP:DQ=2:,
故答案为:2:.
【点睛】本题考查了平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,求出AF×DP=CE×DQ和AF、CE的值是解题的关键.
12、(5,1),(−1)
【解析】
当P位于线段OA上时,显然△PFB不可能是直角三角形;由于∠BPF<∠CPF=90°,所以P不可能是直角顶点,可分两种情况进行讨论:
①F为直角顶点,过F作FD⊥x轴于D,BP=6-t,DP=1OC=4,在Rt△OCP中,OP=t-1,由勾股定理易求得CP=t1-1t+5,那么PF1=(1CP)1=4(t1-1t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF1÷PD=t1-1t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t1-1t+5=6-t,即t= ;
②B为直角顶点,得到△PFB∽△CPO,且相似比为1,那么BP=1OC=4,即OP=OB-BP=1,此时t=1.
【详解】
解:能;
①若F为直角顶点,过F作FD⊥x轴于D,则BP=6-t,DP=1OC=4,
在Rt△OCP中,OP=t-1,
由勾股定理易求得CP1=t1-1t+5,那
么PF1=(1CP)1=4(t1-1t+5);
在Rt△PFB中,FD⊥PB,
由射影定理可求得PB=PF1÷PD=t1-1t+5,
而PB的另一个表达式为:PB=6-t,
联立两式可得t1-1t+5=6-t,即t=,
P点坐标为(,0),
则F点坐标为:( −1);
②B为直角顶点,得到△PFB∽△CPO,且相似比为1,
那么BP=1OC=4,即OP=OB-BP=1,此时t=1,
P点坐标为(1,0).FD=1(t-1)=1,
则F点坐标为(5,1).
故答案是:(5,1),(−1).
此题考查直角三角形的判定、相似三角形的判定和性质,解题关键在于求有关动点问题时要注意分析题意分情况讨论结果.
13、b(x﹣3)(b+1)
【解析】
用提公因式法分解即可.
【详解】
原式= b(x﹣3)·b+b(x﹣3)=b(x﹣3)(b+1).
故答案为:b(x﹣3)(b+1)
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
三、解答题(本大题共5个小题,共48分)
14、4-2.
【解析】
直接利用乘法公式以及二次根式的性质分别计算得出答案.
【详解】
解:原式=12-1-(1-4+12)=4-2
此题主要考查了二次根式结合平方差公式和完全平方公式的混合运算,正确掌握相关运算法则是解题关键.
15、(1)见解析;(2)见解析;(3)+1
【解析】
分析:(1)由题意得,∠BAE=∠EAG,∠DAF=∠FAG,于是得到∠BAD=2∠EAF=90°,推出四边形ABCD是矩形,根据正方形的判定定理即可得到结论;
(2)根据EG=BE,FG=DF,得到EF=BE+DF,于是得到△ECF的周长=EF+CE+CF=BE+DF+CE+CF=BC+CD,即可得到结论;
(3)根据EC=FC=1,得到BE=DF,根据勾股定理得到EF=,于是得到结论.
详(1)证明:由题意得,∠BAE=∠EAG,∠DAF=∠FAG,
∴∠BAD=2∠EAF=90°,
∴四边形ABCD是矩形,
∵AB=AG,AD=AG,
∴AB=AD,
∴四边形ABCD是正方形;
(2)证明:∵EG=BE,FG=DF,
∴EF=BE+DF,
∴△ECF的周长=EF+CE+CF=BE+DF+CE+CF=BC+CD,
∴三角形ECF的周长是四边形ABCD周长的一半;
(3)∵EC=FC=1,
∴BE=DF,
∴EF=,
∵EF=BE+DF,
∴BE=DF=EF=,
∴AB=BC=BE+EC=+1.
点睛:本题考查了翻折变换的知识,解答本题的关键是熟练掌握翻折变换的性质:翻折前后对应边相等,另外要求同学们熟练掌握勾股定理的应用.
16、
【解析】
直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.
【详解】
解:
当时:原式.
此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.
17、(1)①全等,见解析;②点C(1,0);(2)1.
【解析】
(1)①先根据等边三角形的性质得∠OBA=∠CBD=10°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;
②由全等三角形的性质可得∠BAD=∠BOC=∠OAB=10°,可得∠EAO=10°,可求AE=2OA=4,即可求点C坐标;
(2)由题意可得点E是定点,点D在AE上移动,点D所走过的路径的长度=OC=1.
【详解】
解:(1)①△OBC和△ABD全等,
理由是:
∵△AOB,△CBD都是等边三角形,
∴OB=AB,CB=DB,∠ABO=∠DBC,
∴∠OBC=∠ABD,
在△OBC和△ABD中,
∴△OBC≌△ABD(SAS);
②∵△OBC≌△ABD,
∵∠BAD=∠BOC=10°,
又∵∠OAB=10°,
∴∠OAE=180°-∠OAB-∠BAD=10°,
∴Rt△OEA中,AE=2OA=4
∴OC=OA+AC=1
∴点C(1,0);
(2)∵△OBC≌△ABD,
∵∠BAD=∠BOC=10°,AD=OC,
又∵∠OAB=10°,
∴∠OAE=180°-∠OAB-∠BAD=10°,
∴AE=2OA=4,OE=2
∴点E(0,2)
∴点E不会随点C位置的变化而变化
∴点D在直线AE上移动
∵当点C从点O运动到点M时,
∴点D所走过的路径为长度为AD=OC=1.
故答案为:(1)①全等,见解析;②点C(1,0);(2)1.
本题是三角形的综合问题,主要考查全等三角形的判定与性质,等边三角形的性质的运用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解题的关键是利用等腰三角形的性质求出点C的坐标.
18、(1)AE=EF=AF;(2)详见解析;(3)6.
【解析】
(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形;
(2)欲证明BE=CF,只要证明△BAE≌△CAF即可;
(3)根据垂线段最短可知;当AE⊥BC时,△AEF的周长最小;
【详解】
(1)AE=EF=AF.
理由:如图1中,连接AC,
∵四边形ABCD是菱形,∠B=60°,
∴AB=BC=CD=AD,∠B=∠D=60°,
∴△ABC,△ADC是等边三角形,
∴∠BAC=∠DAC=60°
∵BE=EC,
∴∠BAE=∠CAE=30°,AE⊥BC,
∵∠EAF=60°,
∴∠CAF=∠DAF=30°,
∴AF⊥CD,
∴AE=AF(菱形的高相等)
∴△AEF是等边三角形,
∴AE=EF=AF.
故答案为AE=EF=AF;
(2)证明:如图2,
∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
∴△BAE≌△CAF(ASA)
∴BE=CF.
(3)由(1)可知△AEF是等边三角形,
∴当AE⊥BC时,AE的长最小,即△AEF的周长最小,
∵AE=EF=AF=2,
∴△AEF的周长为6.
本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】
函数y=ax+b和y=kx的图象交于点P(-4,-2),
即x=-4,y=-2同时满足两个一次函数的解析式.
所以关于x,y的方程组的解是.
故答案为:.
本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
20、
【解析】
过C作CD⊥AB,易得∠BAC=∠BCA=30°,进而得到BC=BA=20,在Rt△BCD中,利用30°角所对的直角边是斜边的一半与勾股定理即可求出CD.
【详解】
如图,过C作CD⊥AB,
∵渔船速度为30海里/h,40min后渔船行至B处
∴AB=海里
由图可知,∠BAC=90°-60°=30°,∠ABC=90°+30°=120°,
∴∠BCA=180°-120°-30°=30°
∴∠BAC=∠BCA
∴BC=BA=20海里
在Rt△BCD中,∠BCD=30°,
∴BD=BC=10海里
∴CD=海里
故答案为:.
本题考考查了等腰三角形的性质,含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.
21、4或
【解析】
试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:
①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;
②长为3、3的边都是直角边时:第三边的长为:;
∴第三边的长为:或4.
考点:3.勾股定理;4.分类思想的应用.
22、2
【解析】
试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S1,S1+S1=S3,
∵正方形A、B、C、D的面积分别为1,5,1,1,
∵最大的正方形E的面积S3=S1+S1=1+5+1+1=2.
23、1 6 2
【解析】
根据图1和图2得当t=1时,点P到达A处,即AB=1;当S=12时,点P到达点D处,即可求解.
【详解】
①当t=1时,点P到达A处,即AB=1.
故答案是:1;
②过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,
∵AC=AD,
∴DE=CE=,
∴CD=6,
故答案是:6;
③当S=12时,点P到达点D处,则S=CD•BC=(2AB)•BC=1×BC=12,
则BC=2,
故答案是:2.
考查了动点问题的函数图象,注意分类讨论的思想、函数的知识和等腰三角形等的综合利用,具有很强的综合性.
二、解答题(本大题共3个小题,共30分)
24、 (1)、证明过程见解析;(2)、BD=DE–CE;证明过程见解析;(3)、BD=DE–CE;(4)、当B,C在AE的同侧时,BD=DE–CE;当B,C在AE的异侧时,BD=DE+CE.
【解析】
(1)、根据垂直得出∠ADB=∠CEA=90°,结合∠BAC=90°得出∠ABD=∠CAE,从而证明出△ABD和△ACE全等,根据全等得出BD=AE,AD=EC,然后得出答案;(2)、根据第一题同样的方法得出△ABD和△ACE全等,根据全等得出BD=AE,AD=EC,然后得出结论;(3)、根据同样的方法得出结论;(4)、根据前面的结论得出答案.
【详解】
(1)∵BD⊥AE,CE⊥AE
∴∠ADB=∠CEA=90°
∴∠ABD+∠BAD=90°
又∵∠BAC=90°
∴∠EAC+∠BAD=90°
∴∠ABD=∠CAE
在△ABD与△ACE
∴△ABD≌△ACE
∴BD=AE,AD=EC
∴BD=DE+CE
(2)、∵BD⊥AE,CE⊥AE
∴∠ADB=∠CEA=90°
∴∠ABD+∠BAD=90°
又∵∠BAC=90°
∴∠EAC+∠BAD=90°
∴∠ABD=∠CAE
在△ABD与△ACE
∴△ABD≌△ACE
∴BD=AE,AD=EC
∴BD=DE–CE
(3)、同理:BD=DE–CE
(4)、归纳:由(1)(2)(3)可知:当B,C在AE的同侧时,BD =DE –CE;当B,C在AE的异侧时,∴BD=DE+CE
考点:三角形全等的证明与性质
25、(1)见解析;(2)y1>y2.
【解析】
(1)根据两点确定一条直线作出函数图象即可;
(2)根据y随x的增大而减小求解.
【详解】
(1)令y=0,则x=2
令x=0,则y=1
所以,点A的坐标为(2,0)
点B的坐标为(0,1)
画出函数图象如图:
;
(2)∵一次函数y=﹣x+1中,k=-<0,∴y随x的增大而减小
∵﹣1<3
∴y1>y2.
本题考查了一次函数图象上点的坐标特征,一次函数图象,熟练掌握一次函数与坐标轴的交点坐标的求解方法是解题的关键.
26、(1)5t;(2)3小时
【解析】
(1)根据两人行驶的路线围成一个直角三角形,利用勾股定理求解即可;
(2)利用(1)中所求,结合两人距离为15km,即可求出时间.
【详解】
(1)∵甲以3km/h的速度沿正北方向前行;乙以4km/h的速度沿正东方向前行,
∴两人行驶的路线围成一个直角三角形,
∴过t个小时后他俩的距离是:,
答:过t个小时后他俩的距离是5tkm;
(2)由题意可得:5t=15,
解得:t=3,
答:经过3小时,他俩的距离是15km.
本题考查了勾股定理的实际应用,解题的关键是从实际问题中整理出直角三角形模型,利用勾股定理解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份湖北省武汉市江夏区2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省武汉市黄陂区2024-2025学年数学九上开学联考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省武汉市武汉外学校数学九年级第一学期开学考试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。