四川省简阳市平武镇九年义务教育学校2024-2025学年九年级上学期数学第一次月考模拟训练
展开
这是一份四川省简阳市平武镇九年义务教育学校2024-2025学年九年级上学期数学第一次月考模拟训练,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)李华根据演讲比赛中九位评委所给的分数制作了表格:如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
A.平均数B.众数C.方差D.中位数
2、(4分)早晨,小张去公园晨练,下图是他离家的距离y(千米)与时间t(分钟)的函数图象,根据图象信息,下列说法正确的是 ( )
A.小张去时所用的时间多于回家所用的时间B.小张在公园锻炼了20分钟
C.小张去时的速度大于回家的速度D.小张去时走上坡路,回家时走下坡路
3、(4分)某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为( )
A.x(27﹣3x)=75B.x(3x﹣27)=75
C.x(30﹣3x)=75D.x(3x﹣30)=75
4、(4分)甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地.甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法中正确的有( )
①;②甲的速度是60km/h;③乙出发80min追上甲;④乙刚到达货站时,甲距B地180km.
A.4个B.3个C.2个D.1个
5、(4分)下列运算正确的是( )
A.B.C.D.
6、(4分)已知:菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为【 】
A.6cm B.4cm C.3cm D.2cm
7、(4分)下列说法正确的是( )
A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形
B.平行四边形既是中心对称图形,又是轴对称图形
C.对角线相等的四边形是矩形
D.只要是证明两个直角三角形全等,都可以用“HL”定理
8、(4分)平面直角坐标系内,将点向左平移3个长度单位后得到点N,则点N的坐标是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则an=__________(用含n的代数式表示).
10、(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为(1,1),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为________.
11、(4分)如图,直线y=kx+3经过点A(1,2),则它与x轴的交点B的坐标为____.
12、(4分)如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为_____________cm.
13、(4分)若是的小数部分,则的值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)
(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;
(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;
(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.
15、(8分)如图,在平面直角坐标系中,直线y1=x+1与双曲线(k>0)相交于点A、B,已知点A坐标(2,m).
(1)求k的值;
(2)求点B的坐标,并观察图象,写出当时,x的取值范围.
16、(8分)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均每株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.
(1)若每盆增加x株,平均每盆盈利y元,写出y关于x的函数表达式;
(2)要使每盆的盈利为10元,且每盆植入株数尽可能少,问每盆应植入多少株?
17、(10分)如图,在边长为的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.
(1)求AC,DQ的长;
(2)四边形DFPE是菱形吗?为什么?
(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;
(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.
18、(10分)某校共有1000名学生,为了了解他们的视力情况,随机抽查了部分学生的视力,并将调查的数据整理绘制成直方图和扇形图.
(1)这次共调查了多少名学生?扇形图中的、值分别是多少?
(2)补全频数分布直方图;
(3)在光线较暗的环境下学习的学生占对应被调查学生的比例如下表:
根据调查结果估计该校有多少学生在光线较暗的环境下学习?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在菱形ABCD中,点E是AD的中点,对角线AC,BD交于点F,若菱形ABCD的周长是24,则EF=______.
20、(4分)如图,正方形中,点在边上,,把线段绕点旋转,使点落在直线上的点,则两点间的距离为___________.
21、(4分)解关于x的方程产生增根,则常数m的值等于________.
22、(4分) “若实数满足,则”,能够说明该命题是假命题的一组的值依次为_.
23、(4分)如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是_____人.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)因式分解x2-2xy+y2-4
(2)解不等式组
25、(10分)解不等式组,并写出它的所有非负整数解.
26、(12分)已知:如图,在□ABCD中,对角线AC,BD相交于点O,直线EF过点O,交DA于点E,交BC于点F.求证:OE=OF,AE=CF,DE=BF
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数;接下来根据中位数的定义, 结合去掉一个最高分和一个最低分, 不难得出答案.
【详解】
解: 中位数是将一组数从小到大的顺序排列, 取中间位置或中间两个数的平均数得到,所以如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.
故选D.
本题主要考查平均数、众数、方差、中位数的定义,其中一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数.
2、C
【解析】
根据图象可以得到小张去时所用的时间和回家所用的时间,在公园锻炼了多少分钟,也可以求出去时的速度和回家的速度,根据C的速度可以判断去时是否走上坡路,回家时是否走下坡路.
【详解】
解: A、小张去时所用的时间为6分钟,回家所用的时间为10分钟,故选项错误;
B、小张在公园锻炼了20-6=14分钟,故选项错误;
C、小张去时的速度为1÷=10千米每小时,回家的速度的为1÷=6千米每小时,故选项正确;
D、据(1)小张去时走下坡路,回家时走上坡路,故选项错误.
故选C.
本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
3、C
【解析】
设矩形宽为xm,根据可建墙体总长可得出矩形的长为(30-3x)m,再根据矩形的面积公式,即可列出关于x的一元二次方程,此题得解
【详解】
解:设矩形宽为xm,则矩形的长为(30﹣3x)m,
根据题意得:x(30﹣3x)=1.
故选:C.
本题考查的是一元二次方程,熟练掌握一元二次方程是解题的关键.
4、A
【解析】
由线段DE所代表的意思,结合装货半小时,可得出a的值,从而判断出①成立;结合路程=速度×时间,能得出甲车的速度,从而判断出②成立;设出乙车刚出发时的速度为x千米/时,则装满货后的速度为(x-50)千米/时,由路程=速度×时间列出关于x的一元一次方程,解出方程即可得知乙车的初始速度,由甲车先跑的路程÷两车速度差即可得出乙车追上甲车的时间,从而得出③成立;由乙车刚到达货站的时间,可以得出甲车行驶的总路程,结合A、B两地的距离即可判断④也成立.综上可知①②③④皆成立.
【详解】
∵线段DE代表乙车在途中的货站装货耗时半小时,
∴a=4+0.5=4.5(小时),即①成立;
40分钟=小时,
甲车的速度为460÷(7+)=60(千米/时),
即②成立;
设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x−50)千米/时,
根据题意可知:4x+(7−4.5)( x−50)=460,
解得:x=90.
乙车发车时,甲车行驶的路程为60×23=40(千米),
乙车追上甲车的时间为40÷(90−60)=(小时), 小时=80分钟,即③成立;
乙车刚到达货站时,甲车行驶的时间为(4+)小时,
此时甲车离B地的距离为460−60×(4+)=180(千米),
即④成立.
综上可知正确的有:①②③④.
故选:A.
本题考查一次函数的应用——行程问题,解决此类题的关键是,要读懂图象,看清横纵坐标所代表的数学量,及每段图象所代表的情况.
5、D
【解析】
根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.
【详解】
A. 不是同类二次根式,不能合并,故A错误;
B. ,故B错误;
C. ,故C错误;
D. 故D正确.
故选D.
本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.
6、C
【解析】∵四边形ABCD是菱形,∴OB=OD,CD=AD=6cm,
∵OE∥DC,∴OE是△BCD的中位线。∴OE=CD=3cm。故选C。
7、A
【解析】
根据三角形中位线定理可判定出顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形;平行四边形是中心对称图形,不是轴对称图形;对角线相等的平行四边形是矩形;证明两个直角三角形全等的方法不只有HL,还有SAS,AAS,ASA.
【详解】
A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形,说法正确;
B.平行四边形是中心对称图形,不是轴对称图形,原说法错误;
C.对角线相等的平行四边形是矩形,原说法错误;
D.已知两个直角三角形斜边和直角边对应相等,可以用“HL”定理证明全等,原说法错误.
故选A.
本题考查了中心对称图形、直角三角形全等的判定、矩形的判定、中点四边形,关键是熟练掌握各知识点.
8、B
【解析】
向左平移3个长度单位,即点M的横坐标减3,纵坐标不变,得到点N.
【详解】
解:点A(m,n)向左平移3个长度单位后,坐标为(m-3,n),
即点N的坐标是(m-3,n),
故选B.
本题考查坐标与图形变化-平移,在平面直角坐标系中,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3n+1.
【解析】
试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.
试题解析:故剪n次时,共有4+3(n-1)=3n+1.
考点:规律型:图形的变化类.
10、 (-1,-1)
【解析】
根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.
【详解】
菱形OABC的顶点O(0,0),B(2,2),得
D点坐标为(1,1).
每秒旋转45°,则第60秒时,得
45°×60=2700°,
2700°÷360=7.5周,
OD旋转了7周半,菱形的对角线交点D的坐标为(-1,-1),
故答案为:(-1,-1).
本题考查了旋转的性质,利用旋转的性质是解题关键.
11、(3,0)
【解析】
把点代入直线解析式,求出直线的表达式子,再根据点是直线与轴的交点,把代入直线表达式即可求解.
【详解】
解:把A(1,2)代入可得:
解得:
∴
∴把代入可得:
解得:
∴B(3,0)
故答案为(3,0)
本题主要考查了一次函数与坐标轴交点问题,通过一次函数所经过的点求一次函数的解析式是解题的关键.
12、4.
【解析】
试题分析:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,
∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,
∴OB==2cm,∴BD=2OB=4cm.
故答案为4.
考点: 菱形的性质;线段垂直平分线的性质.
13、1
【解析】
根据题意知,而,将代入,即可求解.
【详解】
解:∵ 是的小数部分,而我们知道,
∴,
∴.
故答案为1.
本题目是二次根式的变型题,难度不大,正确理解题干并表示出来,是顺利解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析,点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)是,对称中心的坐标的坐标为(﹣2,﹣1).
【解析】
(1)利用点A和坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、C1的坐标,然后描点即可;
(2)利用关于点对称的点的坐标特征写出A2,B2,C2的坐标,然后描点即可;
(3)连接A1 A2,B1 B2,C1 C2,它们都经过点P,从而可判断△A1B1C1与△A2B2C2关于点P中心对称,再写出P点坐标即可.
【详解】
解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);
(3)△A1B1C1与△A2B2C2关于点P中心对称,如图,
对称中心的坐标的坐标为(﹣2,﹣1).
本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
15、(1)k=6;(2)当x
相关试卷
这是一份四川省成都市简阳市草池镇中学2024-2025学年九年级上学期数学第一次月考试题,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省简阳市施家镇中学2024-2025学年八年级上学期数学第一次月考试题,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省金堂县高板中学2024-2025学年九年级上学期第一次月考数学模拟训练,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。