湖北省阳新县2025届数学九年级第一学期开学综合测试试题【含答案】
展开这是一份湖北省阳新县2025届数学九年级第一学期开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一组数据,,,,的平均数为5,则另一组数据,,,,的平均数为( )
A.4B.5C.6D.7
2、(4分)某品牌鞋店在一个月内销售某款女鞋,各种尺码鞋的销量如下表所示:
通过分析上述数据,对鞋店业主的进货最有意义的是
A.平均数B.众数C.中位数D.方差
3、(4分)如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为 ( )
A.105°B.112.5°C.120°D.135°
4、(4分)下列说法正确的是( )
A.为了解我国中学生课外阅读的情况,应采取全面调查的方式
B.一组数据1、2、5、5、5、3、3的中位数和众数都是5
C.投掷一枚硬币100次,一定有50次“正面朝上”
D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定
5、(4分)某交警在一个路口统计某时间段来往车辆的车速情况如下表,则上述车速的中位数和众数分别是( )
A.50,8B.50,50C.49,50D.49,8
6、(4分)如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是( )
A.16B.25C.144D.169
7、(4分)如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )
A.B.C.D.
8、(4分)已知:是整数,则满足条件的最小正整数为( )
A.2B.3C.4D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.
10、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:=2,=1.5,则射击成绩较稳定的是_______(填“甲”或“乙”).
11、(4分)如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.
12、(4分)已知x=2时,分式的值为零,则k=__________.
13、(4分)将直线y=2x向下平移2个单位,所得直线的函数表达式是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图, 在中,,是延长线上一点,点是的中点。
(1)实践与操作:①作的平分线;②连接并延长交于点,连接(尺规作图,保留作图痕迹,不写作法,在图中标明相应字母);
(2)猜想与证明:猜想四边形的形状,并说明理由。
15、(8分)已知,求代数式的值。
16、(8分)若关于的一元二次方程有实数根,.
(1)求实数的取值范围;
(2)设,求的最小值.
17、(10分)菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.
(1)如图1,求∠BGD的度数;
(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;
(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=4,求菱形ABCD的面积.
18、(10分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) “五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是_____.
20、(4分)点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.
21、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则 OC=_____.
22、(4分)如图,直线与轴、轴分别交于点和点,点,分别为线段,的中点,点为上一动点,值最小时,点的坐标为______.
23、(4分)如图,在第个中,:在边取一点,延长到,使,得到第个;在边上取一点,延长到,使,得到第个,…按此做法继续下去,则第个三角形中以为顶点的底角度数是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为提高市民的精神生活美化城市环境,城市管理局从外地新进一批绿化树苗,现有两种运输方式可供选择,
方式一:使用快递公司的邮车运输,装卸收费500元,另外每公里再加收5元;
方式二:使用铁路运输公司的火车运输,装卸收费900元,另外每公里再加收3元.
(1)请分别写出邮车、火车运输的总费用为(元)、(元)与运输路程(公里)之间的函数关系式;
(2)你认为选用哪种运输方式较好,为什么?
25、(10分)计算:
(1);
(2)(﹣)(+)+(﹣1)2
26、(12分)解分式方程:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据平均数的性质,所有数之和除以总个数即可得出平均数.
【详解】
依题意得:a1+4+a2-1+a3+1+a4-5+a5+5
=a1+a2+a3+a4+a5+10
=35,
所以平均数为35÷5=1.
故选D.
本题考查的是平均数的定义,本题利用了整体代入的思想,解题的关键是了解算术平均数的定义,难度不大.
2、B
【解析】
解:众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.故选B.
3、D
【解析】
连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′=PB=2,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.
【详解】
解:连结PP′,如图,
∵四边形ABCD为正方形,
∴∠ABC=90°,BA=BC,
∴△ABP绕点B顺时针旋转90°得到△CBP′,
∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,
∴△PBP′为等腰直角三角形,
∴∠BPP′=45°,PP′=PB=2,
在△APP′中,∵PA=1,PP′=2,AP′=3,
∴PA2+PP′2=AP′2,
∴△APP′为直角三角形,∠APP′=90°,
∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,
∴∠BP′C=135°.
故选D.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.
4、D
【解析】
解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,
把数据1、2、5、5、5、3、3从小到大排列1、2、3、3、5、5、5;所以中位数为:3;
5出现的次数最多,所以众数是5,故选项B错误,
投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,
若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D正确,
故选D.
本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.
5、B
【解析】
把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.
【详解】
解:要求一组数据的中位数,
把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,
所以中位数是50,
在这组数据中出现次数最多的是50,
即众数是50,
故选:B.
本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.
6、B
【解析】
两个阴影正方形的面积和等于直角三角形另一未知边的平方,利用勾股定理即可求出.
【详解】
两个阴影正方形的面积和为132- 122= 25,所以B选项是正确的.
本题主要考查了正方形的面积以及勾股定理的应用,推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.
7、B
【解析】
由题意可知,
当时,;
当时,
;
当时,.∵时,;时,.∴结合函数解析式,
可知选项B正确.
考点:1.动点问题的函数图象;2.三角形的面积.
8、D
【解析】
试题解析:∵=,且是整数,
∴2是整数,即1n是完全平方数,
∴n的最小正整数为1.
故选D.
点睛:主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则.除法法则.解题关键是分解成一个完全平方数和一个代数式的积的形式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
∵将△ABC绕点B顺时针旋转60°,得到△BDE,
∴△ABC≌△BDE,∠CBD=60°,
∴BD=BC=12cm,
∴△BCD为等边三角形,
∴CD=BC=BD=12cm,
在Rt△ACB中,AB===13,
△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),
故答案为1.
考点:旋转的性质.
10、答案为:乙 ;
【解析】
【分析】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
【详解】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定;乙的方差比较小,所以乙的成绩比较稳定.
故答案为乙
【点睛】本题考核知识点:方差.解题关键点:理解方差的意义.
11、1
【解析】
因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.
【详解】
解:易证△AFD′≌△CFB,
∴D′F=BF,
设D′F=x,则AF=16-x,
在Rt△AFD′中,(16-x)2=x2+82,
解之得:x=6,
∴AF=AB-FB=16-6=10,
故答案为:1.
本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.
12、-6
【解析】
由题意得:6+k=0,解得:k=-6.
故答案:-6.
【方法点睛】本题目是一道考查分式值为0的问题,分式值为0:即当分子为0且分母不为0.从而列出方程,得解.
13、y=1x﹣1.
【解析】
解:根据一次函数的平移,上加下减,可知一次函数的表达式为y=1x-1.
三、解答题(本大题共5个小题,共48分)
14、(1)①见解析,②见解析;(2)四边形是平行四边形,见解析.
【解析】
(1)根据角平分线的做法即可求解;
(2)根据等腰三角形的性质及角平分线的性质证明,即可求证.
【详解】
(1)①作图正确并有轨迹。
②连接并延长交于点,连接;
(2)解:四边形是平行四边形,
理由如下:∵,
∴,
∴,即,
∵平分,∴,∴,
∴,
∵点时中点,∴,
在与中
∴
∴四边形是平行四边形。
此题主要考查平行四边形的判定,解题的关键是熟知角平分线的做法及全等三角形的判定判断与性质.
15、
【解析】
把x的值直接代入,再根据乘法公式进行计算即可.
【详解】
解:当时,
此题主要考查整式的运算,解题的关键是熟知整式的运算公式.
16、(1)k≤−2;(2)t的最小值为−1.
【解析】
(1)由一元二次方程存在两实根,可得△≥0,进而求得k的取值范围;
(2)将α+β化为关于k的表达式,根据k的取值范围得出t的取值范围,即可求得的最小值.
【详解】
(1)∵一元二次方程x2−2(2−k)x+k2+12=0有实数根a,β,
∴△≥0,即:1(2−k)2−1(k2+12)≥0,解得:k≤−2;
(2)由根与系数的关系得:a+β=−[−2(2−k)]=1−2k,
∴==−2,
∵k≤−2,
∴−2≤<0,
∴−1≤−2<−2,
∴t的最小值为−1.
本题主要考查一元二次方程根的判别式以及根与系数的关系,掌握(a≠0),有实数根a,β时,则△≥0,a+β=,aβ=,是解题的关键.
17、(1)∠BGD=120°;(2)见解析;(3)S四边形ABCD=26.
【解析】
(1)只要证明△DAE≌△BDF,推出∠ADE=∠DBF,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
(2)如图3中,延长GE到M,使得GM=GB,连接BD、CG.由△MBD≌△GBC,推出DM=GC,∠M=∠CGB=60°,由CH⊥BG,推出∠GCH=30°,推出CG=2GH,由CG=DM=DG+GM=DG+GB,即可证明2GH=DG+GB;
(3)解直角三角形求出BC即可解决问题;
【详解】
(1)解:如图1﹣1中,
∵四边形ABCD是菱形,
∴AD=AB,
∵∠A=60°,
∴△ABD是等边三角形,
∴AB=DB,∠A=∠FDB=60°,
在△DAE和△BDF中,
,
∴△DAE≌△BDF,
∴∠ADE=∠DBF,
∵∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,
∴∠BGD=180°﹣∠BGE=120°.
(2)证明:如图1﹣2中,延长GE到M,使得GM=GB,连接CG.
∵∠MGB=60°,GM=GB,
∴△GMB是等边三角形,
∴∠MBG=∠DBC=60°,
∴∠MBD=∠GBC,
在△MBD和△GBC中,
,
∴△MBD≌△GBC,
∴DM=GC,∠M=∠CGB=60°,
∵CH⊥BG,
∴∠GCH=30°,
∴CG=2GH,
∵CG=DM=DG+GM=DG+GB,
∴2GH=DG+GB.
(3)如图1﹣2中,由(2)可知,在Rt△CGH中,CH=4,∠GCH=30°,
∴tan30°=,
∴GH=4,
∵BG=6,
∴BH=2,
在Rt△BCH中,BC=,
∵△ABD,△BDC都是等边三角形,
∴S四边形ABCD=2•S△BCD=2××()2=26.
本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
18、见解析
【解析】
首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相平分的四边形是平行四边形得出结论.
【详解】
解:证明:连接BD,交AC于点O,如图所示,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OA﹣AE=OC﹣CF,
即OE=OF,
∴四边形DEBF是平行四边形.
本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6<v<2或v=4.2
【解析】
利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.
【详解】
解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).
将(0,1)、(30,300)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=2x+1;
将(0,1)、(70,420)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=6x+1;
将(0,1)、(50,300)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=4.2x+1.
观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<2或v=4.2.
故答案为6<v<2或v=4.2
本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.
20、2
【解析】
试题解析:∵点M(a,-5)与点N(-1,b)关于x轴对称,
∴a=-1.b=5,
∴a+b=-1+5=2.
点睛:关于x轴、y轴对称的点的坐标特征:点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b).
21、1
【解析】
解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,∠BAD=90°,∵∠ADB=30°,∴AC=BD=2AB=8,∴OC=AC=1.故答案为1.
点睛:此题考查了矩形的性质、含30°角的直角三角形的性质.熟练掌握矩形的性质,注意掌握数形结合思想的应用.
22、 (-,0)
【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.
【详解】
作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4);
令y=x+4中y=0,则x+4=0,解得:x=-6,
∴点A的坐标为(-6,0).
∵点C、D分别为线段AB、OB的中点,
∴点C(-3,1),点D(0,1).
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-1).
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(-3,1),D′(0,-1),
∴有,解得:,
∴直线CD′的解析式为y=-x-1.
令y=-x-1中y=0,则0=-x-1,解得:x=-,
∴点P的坐标为(-,0).
故答案为:(-,0).
本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.
23、.
【解析】
先根据等腰三角形的性质求出的度数,再根据三角形外角的性质及等腰三角形的性质求出,及的度数.
【详解】
在中,,,
,是的外角,
,
同理可得 .
故答案为:.
本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出、及的度数.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)当运输路程等于200千米时,,用两种运输方式一样;当运输路程小于200千米时,,用邮车运输较好;当运输路程大于200千米时,,用火车运输较好.
【解析】
(1)根据方式一、二的收费标准即可得出y1(元)、y2(元)与运输路程x(公里)之间的函数关系式.
(2)比较两种方式的收费多少与x的变化之间的关系,从而根据x的不同选择合适的运输方式.
【详解】
解:(1)由题意得:,;
(2)令,解得,
∴当运输路程等于200千米时,,用两种运输方式一样;
当运输路程小于200千米时,,用邮车运输较好;
当运输路程大于200千米时,,用火车运输较好.
此题考查了一次函数的应用,解答本题的关键是根据题意所述两种运输方式的收费标准,得出总费用y1(元)、y2(元)与运输路程x(公里)关系式.
25、 (1);(2).
【解析】
(1)先分别进行化简,然后再合并同类二次根式即可;
(2)先利用平方差公式以及完全平方公式进行展开,然后再进行加减运算即可.
【详解】
(1)原式=
=
=;
(2)原式=
=.
本题考查了二次根式的化简,二次根式的混合运算,熟练掌握相关的运算法则是解题的关键.
26、
【解析】
首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.
【详解】
解:方程两边乘以得:,
解这个方程得:,
检验:当时,,
是原方程的解;
原方程的解是:.
本题考查了分式方程的解法、一元一次方程方程的解法;熟练掌握分式方程的解法,方程两边乘以最简公分母,把分式方程化成整式方程是解决问题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
尺码/厘米
22.5
23
23.5
24
24.5
销售量/双
35
40
30
17
8
相关试卷
这是一份湖北省孝感汉川市2024-2025学年数学九年级第一学期开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省襄阳襄州区五校联考2024年九年级数学第一学期开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖北省恩施九年级数学第一学期开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。