终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    湖北省宜昌市夷陵区2024年数学九上开学检测模拟试题【含答案】

    立即下载
    加入资料篮
    湖北省宜昌市夷陵区2024年数学九上开学检测模拟试题【含答案】第1页
    湖北省宜昌市夷陵区2024年数学九上开学检测模拟试题【含答案】第2页
    湖北省宜昌市夷陵区2024年数学九上开学检测模拟试题【含答案】第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省宜昌市夷陵区2024年数学九上开学检测模拟试题【含答案】

    展开

    这是一份湖北省宜昌市夷陵区2024年数学九上开学检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)为了解某学校七至九年级学生每天的体育锻炼时间,下列抽样调查的样本代表性较好的是( )
    A.选择七年级一个班进行调查
    B.选择八年级全体学生进行调查
    C.选择全校七至九年级学号是5的整数倍的学生进行调查
    D.对九年级每个班按5%的比例用抽签的方法确定调查者
    2、(4分)如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于( )
    A.2B.C.4D.4
    3、(4分)在函数y=中,自变量x的取值范围是( )
    A.x≥1B.x≤1且x≠0C.x≥0且x≠1D.x≠0且x≠1
    4、(4分)下列根式中,不能与合并的是( )
    A.B.C.D.
    5、(4分)若=x﹣5,则x的取值范围是( )
    A.x<5B.x≤5C.x≥5D.x>5
    6、(4分)函数中自变量x的取值范围是( )
    A.B.且C.x<2且D.
    7、(4分)如图,已知 BG 是∠ABC 的平分线,DE⊥AB 于点 E,DF⊥BC 于点 F,DE=6,则 DF 的长度是( )
    A.2B.3C.4D.6
    8、(4分)在数学活动课上,老师要求同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是( )
    A.测量对角线是否相互平分B.测量两组对边是否分别相等
    C.测量一组对角是否都为直角D.测量四边形其中的三个角是否都为直角
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在Rt△ABC中,∠C=90°,AD=BE=2,点M,P,N分别是DE,BD,AB的中点,则△PMN的周长=___.
    10、(4分)若,是一元二次方程的两个根,则的值是_________.
    11、(4分)平面直角坐标系中,A是y=﹣(x>0)图象上一点,B是x轴正半轴上一点,点C的坐标为(0,﹣2),若点D与A,B,C构成的四边形为正方形,则点D的坐标_____.
    12、(4分)直线y=kx+3经过点(2,-3),则该直线的函数关系式是____________
    13、(4分)小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)为了丰富学生的课外活动,拓展孩子们的课外视野,我校的社团活动每年都在增加,社员也一直在增加.2017年我校八年级社员的总人数是300人,2019年我校八年级总校社员有432人。试求出这两年八年级社员人数的平均增长率.
    15、(8分)已知:一次函数y=(1﹣m)x+m﹣3
    (1)若一次函数的图象过原点,求实数m的值.
    (2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.
    16、(8分)把顺序连结四边形各边中点所得的四边形叫中点四边形。
    (1)任意四边形的中点四边形是什么形状?为什么?
    (2)符合什么条件的四边形,它的中点四边形是菱形?
    (3)符合什么条件的四边形,它的中点四边形是矩形?
    17、(10分)中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国诗词大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢)C类(一般),D类(不喜欢).请结合两幅统计图,回答下列问题:
    (1)求本次抽样调查的人数;
    (2)请补全两幅统计图;
    (3)若该校有3000名学生,请你估计观看“中国诗词大会”节目较喜欢的学生人数.
    18、(10分)根据《佛山﹣环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线将串联起狮山、乐平、三水新城、水都基地、白坭等城镇节点,在这项工程中,有一段4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天.求甲、乙两个工程队平均每天各完成多少米?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图所示的圆形工件,大圆的半径为,四个小圆的半径为,则图中阴影部分的面积是_____(结果保留).
    20、(4分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是__________.
    21、(4分)已知y与x﹣1成正比例,当x=3时,y=4;那么当x=﹣3时,y=_____.
    22、(4分)将长为20cm、宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x之间的关系式为_______.
    23、(4分)如图,在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,则DE的长为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
    (1)求购买A型和B型公交车每辆各需多少万元?
    (2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
    (3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
    25、(10分)阅读下面的解答过程,然后答题:已知a为实数,化简:
    解:原式 ①

    (1)上述解答是否有错误?
    (2)若有错误,从第几步开始出现错误?
    (3)写出正确的解答过程。
    26、(12分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是.
    (1)取出白球的概率是多少?
    (2)如果袋中的白球有18只,那么袋中的红球有多少只?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    直接利用抽样调查必须具有代表性,进而分析得出答案.
    【详解】
    抽样调查的样本代表性较好的是:选择全校七至九年级学号是5的整数倍的学生进行调查,故选C.
    此题主要考查了抽样调查的可靠性,正确把握抽样调查的意义是解题关键.
    2、C
    【解析】
    解:设,可求出,由于对角线垂直,计算对角线乘积的一半即可.
    【详解】
    设A(a,),可求出D(2a,),
    ∵AB⊥CD,
    ∴S四边形ACBD=AB∙CD=×2a×=4,
    故选:C.
    本题主要考查了反比例函数系数k的几何意义以及线段垂直平分线的性质,解题的关键是设出点A和点B的坐标.
    3、C
    【解析】
    根据分式和二次根式有意义的条件进行计算即可.
    【详解】
    由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.
    故x的取值范围是x≥2且x≠2.
    故选C.
    本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.
    4、C
    【解析】
    解:A、,本选项不合题意;
    B、,本选项不合题意;
    C、,本选项合题意;
    D、,本选项不合题意;
    故选C.
    考点:同类二次根式.
    5、C
    【解析】
    因为=-a(a≤0),由此性质求得答案即可.
    【详解】
    ∵=x-1,
    ∴1-x≤0
    ∴x≥1.
    故选C.
    此题考查二次根式的性质:=a(a≥0),=-a(a≤0).
    6、B
    【解析】
    由已知得:且,
    解得:且.
    故选B.
    7、D
    【解析】
    根据角平分线的性质进行求解即可得.
    【详解】
    ∵BG 是∠ABC 的平分线,DE⊥AB,DF⊥BC,
    ∴DF=DE=6,
    故选D.
    本题考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.
    8、D
    【解析】
    根据矩形的判定定理即可选出答案.
    【详解】
    解:A.对角线是否相互平分,能判定平行四边形,而不能判定矩形;
    B.两组对边是否分别相等,能判定平行四边形,而不能判定矩形;
    C.一组对角是否都为直角,不能判定形状;
    D.四边形其中的三个角是否都为直角,能判定矩形.
    故选D.
    本题考查了矩形的判定定理.解题的关键是牢记这些定理.
    矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;
    (2)有三个角是直角的四边形是矩形;
    (3)对角线互相平分且相等的四边形是矩形.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2+.
    【解析】
    先由三角形中位线定理得出PM∥BC,PN∥AC,PM=BE=1,PN=AD=1,再根据平行线的性质得出∠MPD=∠DBC,∠DPN=∠CDB,可证∠MPN=90°,利用勾股定理求出MN==,进而得到△PMN的周长.
    【详解】
    ∵点M,P,N分别是DE,BD,AB的中点,AD=BE=2,
    ∴PM∥BC,PN∥AC,PM=BE=1,PN=AD=1,
    ∴∠MPD=∠DBC,∠DPN=∠CDB,
    ∴∠MPD+∠DPN=∠DBC+∠CDB=180°﹣∠C=90°,
    即∠MPN=90°,
    ∴MN==,
    ∴△PMN的周长=2+.
    故答案为2+.
    本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.也考查了平行线的性质,勾股定理,三角形内角和定理.求出PM=PN=1,MN=是解题的关键.
    10、6
    【解析】
    首先把提公因式进行因式分解得到,然后运用韦达定理,,最后代入求值.
    【详解】
    =
    由韦达定理可知:代入得:
    故答案为6
    本题考查了一元二次方程两根之间的关系,由韦达定理可知,的两根为,则.
    11、(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).
    【解析】
    首先依据题意画图图形,对于图1和图2依据正方形的对称性可得到点D的坐标,对于图3可证明△AEC≌△BFA,从而可得到AE=BF,然后由反比例函数的解析式可求得点A的坐标,然后可得到点D的坐标.
    【详解】
    如图1所示:当CD为对角线时.
    ∵OC=2,AB=CD=4,
    ∴D(4,﹣2).
    如图2所示:
    ∵OC=2,BD=AC=4,
    ∴D(2,﹣4).
    如图3所示:过点A作AE⊥y轴,BF⊥AE,则△AEC≌△BFA.
    ∴AE=BF.
    设点A的横纵坐标互为相反数,
    ∴A(2,﹣2)
    ∴D(2﹣2,2﹣2).
    综上所述,点D的坐标为(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).
    故答案为:(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).
    本题主要考查的是正方形的性质,反比例函数的性质,依据题意画出复合题意得图形是解题的关键.
    12、y=-1x+1
    【解析】
    直接把(2,-1)代入直线y=kx+1,求出k的值即可.
    【详解】
    ∵直线y=kx+1经过点(2,-1),
    ∴-1=2k+1,解得k=-1,
    ∴函数关系式是y=-1x+1.
    故答案为:y=-1x+1.
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    13、两组对边分别相等的四边形是平行四边形.
    【解析】
    根据平行四边形的判定可得:两组对边分别相等的四边形是平行四边形.
    故答案是:两组对边分别相等的四边形是平行四边形.
    三、解答题(本大题共5个小题,共48分)
    14、20%
    【解析】
    根据题意,提取出有效信息,建立一元二次方程的模型进行解题即可.
    【详解】
    解:设这两年八年级社员人数的平均增长率为x,
    依题意得,300(1+x)2=432
    解得:x=0.2或x=-2.2(舍)
    ∴这两年八年级社员人数的平均增长率为20%.
    本题考查了一元二次方程的实际应用,属于简单题,根据题意找到等量关系是解题关键,
    15、(1)m=1;(2)1<m<1.
    【解析】
    根据一次函数的相关性质进行作答.
    【详解】
    (1)∵一次函数图象过原点,
    ∴,
    解得:m=1
    (2)∵一次函数的图象经过第二、三、四象限,
    ∴,
    ∴1<m<1.
    本题考查了一次函数的相关性质,熟练掌握一次函数的相关性质是本题解题关键.
    16、(1)平行四边形;理由见解析;(2)当原四边形的对角线相等时,它的中点四边形是菱形;(3)当原四边形的对角线互相垂直时,它的中点四边形是矩形.
    【解析】
    (1)连接BD、由点E、H分别为边AB、AD的中点,同理知FG∥BD、FG=BD,据此可得EH=FG、EH∥FG,即可得证;
    (2)同理根据对角线相等,可知邻边相等,中点四边形是菱形;
    (3)同理根据对角线互相垂直,可知有一个角是直角,中点四边形是矩形.
    【详解】
    (1)任意四边形的中点四边形是平行四边形,理由是:
    如图1,连接BD,
    ∵点E、H分别为边AB、AD的中点,
    ∴EH∥BD、EH=BD,
    ∵点F、G分别为BC、DC的中点,
    ∴FG∥BD、FG=BD,
    ∴EH=FG、EH∥FG,
    ∴中点四边形EFGH是平行四边形;
    (2)当原四边形的对角线相等时,它的中点四边形是菱形;
    证明:与(1)同理:EH=FG=BD=AC=EF=HG,得它的中点四边形是菱形;
    (3)当原四边形的对角线互相垂直时,它的中点四边形是矩形;
    证明:与(1)同理:EH∥FG∥BD,AC∥EF∥HG,
    ∵AC⊥BD,
    ∴EH、FG分别与EF、HG垂直,
    ∴得它的中点四边形是矩形.
    本题主要考查中点四边形的综合问题,解题的关键是熟练掌握三角形中位线定理、平行四边形和菱形的判定与性质.
    17、(1)100(人);(2)详见解析;(3)1050人.
    【解析】
    (1)用A类的人数除以它所占的百分比,即可得本次抽样调查的人数;
    (2)分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,即可补全统计图;
    (3)用3000乘以样本中观看“中国诗词大会”节目较喜欢的学生人数所占的百分比,即可解答.
    【详解】
    解:(1)本次抽样调查的人数为:20÷20%=100(人);
    (2)D类的人数为:100﹣20﹣35﹣100×19%=26(人),
    D类所占的百分比为:26÷100×100%=26%,
    B类所占的百分比为:35÷100×100%=35%,
    如图所示:
    (3)3000×35%=1050(人).
    观看“中国诗词大会”节目较喜欢的学生人数为1050人.
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.
    18、甲工程队平均每天完成1米,乙工程队平均每天完成100米.
    【解析】
    设乙工程队平均每天完成x米,则甲工程队平均每天完成2x米,根据工作时间=总工作量÷工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天,即可得出关于x的分式方程,解之经检验后即可得出结论.
    【详解】
    设乙工程队平均每天完成x米,则甲工程队平均每天完成2x米,
    根据题意得:,
    解得:x=100,
    经检验,x=100是原分式方程的解,且符合题意,
    ∴2x=1.
    答:甲工程队平均每天完成1米,乙工程队平均每天完成100米.
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3080π.
    【解析】
    用大圆的面积减去4个小圆的面积即可得到剩余部分的面积,然后把R和r的值代入计算出对应的代数式的值.
    【详解】
    依题意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).
    答:剩余部分面积为3080πmm1.
    故答案为:3080π.
    本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.
    20、﹣3
    【解析】
    令时,解得,故与轴的交点为.由函数图象可得,当时,函数的图象在轴上方,且其函数图象在函数图象的下方,故解集是,所以关于的不等式的整数解为.
    21、﹣8
    【解析】
    首先根据题意设出关系式:y=k(x-1),再利用待定系数法把x=3,y=4代入,可得到k的值,再把k的值代入所设的关系式中,然后把x=-3代入即可求得答案.
    【详解】
    ∵y与x-1成正比例,
    ∴关系式设为:y=k(x-1),
    ∵x=3时,y=4,
    ∴4=k(3-1),
    解得:k=2,
    ∴y与x的函数关系式为:y=2(x-1)=2x-2,
    当x=-3时,y=-6-2=-8,
    故答案为:-8.
    本题考查了待定系数法求一次函数解析式,关键是设出关系式,代入x,y的值求k.
    22、y=17x+1
    【解析】
    由图可知,将x张这样的白纸粘合后的总长度=x张白纸的总长-(x-1)个粘合部分的宽,把相关数据代入化简即可得到所求关系式.
    【详解】
    解:
    由题意可得:y=20x-1(x-1)=17x+1,
    即:y与x间的函数关系式为:y=17x+1.
    故答案为:y=17x+1.
    观察图形,结合题意得到:“白纸粘合后的总长度=x张白纸的总长-(x-1)个粘合部分的宽”是解答本题的关键.
    23、1
    【解析】
    根据角平分线的判定定理求出∠BAD,根据直角三角形的性质计算,得到答案.
    【详解】
    解:∵DE⊥AB,DF⊥AC,DE=DF,
    ∴∠BAD=∠CAD=∠BAC=30°,
    在Rt△ADE中,∠BAD=30°,
    ∴DE=AD=1,
    故答案为1.
    本题考查的是角平分线的判定、直角三角形的性质,掌握到角的两边距离相等的点在角的平分线上是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
    (3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
    【解析】
    详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
    解得,
    答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得

    解得:6≤a≤8,
    因为a是整数,
    所以a=6,7,8;
    则(10-a)=4,3,2;
    三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
    (3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
    ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
    ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
    故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
    25、(1)有错误;(2)①;(3)
    【解析】
    观察已知代数式,要使二次根式有意义,则,a≠0,-a3≥0,即a<0,考虑将两个二次根式写成最简二次根式的形式;
    将 变形为 、 变形为 ,对其进行约分;
    接下来对所得式子进行整理,即可得到本题的答案.
    【详解】
    (1)有错误
    (2)①
    (3)
    本题主要考查了二次根式性质与化简,注意a是负数,不能改变符号.
    26、 (1)(2)袋中的红球有6只.
    【解析】
    (1)根据取出白球的概率是1-取出红球的概率即可求出;
    (2)设有红球x个,则总求出为(x+18)个,再根据红球的概率即可列出方程,从而解出x.
    【详解】
    解:(1)=
    (2)设袋中的红球有只,
    则有
    解得
    所以,袋中的红球有6只.
    题号





    总分
    得分
    批阅人

    相关试卷

    湖北省宜昌市宜都市2024-2025学年数学九上开学质量检测模拟试题【含答案】:

    这是一份湖北省宜昌市宜都市2024-2025学年数学九上开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北省宜昌市名校2024-2025学年九上数学开学调研模拟试题【含答案】:

    这是一份湖北省宜昌市名校2024-2025学年九上数学开学调研模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖北省宜昌市数学九上开学达标检测模拟试题【含答案】:

    这是一份2025届湖北省宜昌市数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map