年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    湖南省衡阳市第九中学2024年数学九年级第一学期开学考试试题【含答案】

    湖南省衡阳市第九中学2024年数学九年级第一学期开学考试试题【含答案】第1页
    湖南省衡阳市第九中学2024年数学九年级第一学期开学考试试题【含答案】第2页
    湖南省衡阳市第九中学2024年数学九年级第一学期开学考试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省衡阳市第九中学2024年数学九年级第一学期开学考试试题【含答案】

    展开

    这是一份湖南省衡阳市第九中学2024年数学九年级第一学期开学考试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若一个多边形每一个内角都是135º,则这个多边形的边数是 ( )
    A.6B.8C.10D.12
    2、(4分)如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为( )
    A.B.C.D.
    3、(4分)某学习小组 8 名同学的地理成绩是 35、50、45、42、36、38、40、42(单位:分),这组数据 的平均数和众数分别为( )
    A.41、42B.41、41C.36、42D.36、41
    4、(4分)小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是( )
    A.正方形B.正六边形
    C.正八边形D.正十二边形
    5、(4分)货车行驶 25 千米与小车行驶 35 千米所用时间相同,已知小车每小时比货车多行驶 20千米,求两车的速度各为多少?设货车的速度为 x 千米/小时,依题意列方程正确的是( )
    A.B.C.D.
    6、(4分)如图,在中,分别以点A,C为圆心,大于长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若,,则的周长是( )
    A.7B.8C.9D.10
    7、(4分)一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是
    A.40B.20C.10D.25
    8、(4分)下列图象能表示一次函数的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)因式分解:____________.
    10、(4分)在平行四边形中,,若,,则的长是__________.
    11、(4分)当x=时,二次根式的值为_____.
    12、(4分)如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,,AE、BF分别交BD、AC于M、N两点,连OE、下列结论:;;;,其中正确的序数是______.
    13、(4分)线段、正三角形,平行四边形、菱形中,只是轴对称图形的是_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.
    (1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
    (2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
    15、(8分)如图1,在ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接DE,现将ADE绕点A逆时针旋转一定角度(如图2),连接BD,CE.
    (1)求证:ABD≌ACE;
    (2)延长BD交CE于点F,若AD⊥BD,BD=6,CF=4,求线段DF的长.
    16、(8分)如图1,在△ABC中,AB=BC=5,AC=6,△ECD是△ABC沿BC方向平移得到的,连接AE、BE,且AC和BE相交于点O.
    (1)求证:四边形ABCE是菱形;
    (2)如图2,P是线段BC上一动点(不与B.C重合),连接PO并延长交线段AE于点Q,过Q作QR⊥BD交BD于R.
    ①四边形PQED的面积是否为定值?若是,请求出其值;若不是,请说明理由;
    ②以点P、Q、R为顶点的三角形与以点B.C.O为顶点的三角形是否可能相似?若可能,请求出线段BP的长;若不可能,请说明理由.
    17、(10分)如图,平行四边形ABCD中,点E为AB边上一点,请你用无刻度的直尺,在CD边上画出点 F,使四边形AECF为平行四边形,并说明理由.
    18、(10分)已知一次函数y=(m+2)x+3- m,
    (1)m为何值时,函数的图象经过坐标原点?
    (2)若函数图象经过第一、二、三象限,求m的取值范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若一个等腰三角形的顶角等于70°,则它的底角等于________度,
    20、(4分)若x=-1, 则x2+2x+1=__________.
    21、(4分)若等腰三角形的顶角与一个底角度数的比值等于,该等腰三角形的顶角为_________.
    22、(4分)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式) .
    23、(4分)如图,正方形 ABCD 的顶点 C, A 分别在 x 轴, y 轴上, BC 是菱形 BDCE 的对角线.若 BC  6, BD  5, 则点 D 的坐标是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:
    (1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C= °,∠D= °
    (2)在探究等对角四边形性质时:
    小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;
    (3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.
    要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.
    (4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.
    25、(10分)如图,在平面直角坐标系中,直线y1=x+1与双曲线(k>0)相交于点A、B,已知点A坐标(2,m).
    (1)求k的值;
    (2)求点B的坐标,并观察图象,写出当时,x的取值范围.
    26、(12分)如图,一架5米长的梯子AB斜靠在一面墙上,梯子底端B到墙底的垂直距离BC为3米.
    (1)求这个梯子的顶端A到地面的距离AC的值;
    (2)如果梯子的顶端A沿墙AC竖直下滑1米到点D处,求梯子的底端B在水平方向滑动了多少米?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题分析:设多边形的边数为n,则=135,解得:n=8
    考点:多边形的内角.
    2、C
    【解析】
    连接AE,利用△ABE≌△BCF转化线段BF得到BF+DE=AE+DE,则通过作A点关于BC对称点H,连接DH交BC于E点,利用勾股定理求出DH长即可.
    【详解】
    解:连接AE,如图1,
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠ABE=∠BCF=90°.
    又BE=CF,
    ∴△ABE≌△BCF(SAS).
    ∴AE=BF.
    所以BF+DE最小值等于AE+DE最小值.
    作点A关于BC的对称点H点,如图2,
    连接BH,则A、B、H三点共线,
    连接DH,DH与BC的交点即为所求的E点.
    根据对称性可知AE=HE,
    所以AE+DE=DH.
    在Rt△ADH中,DH=
    ∴BF+DE最小值为4.
    故选:C.
    本题主要考查正方形的性质,轴对称的性质,全等三角形的判定及性质,勾股定理,能够作出辅助线将线段转化是解题的关键.
    3、A
    【解析】
    根据众数和平均数的概念求解.
    【详解】
    这组数据中42出现的次数最多,
    故众数为42,
    平均数为: =41.
    故选A.
    此题考查众数,算术平均数,解题关键在于掌握其定义.
    4、C
    【解析】
    根据密铺的条件得,两多边形内角和必须凑出360°,进而判断即可.
    【详解】
    A. 正方形的每个内角是,∴能密铺;
    B. 正六边形每个内角是, ∴能密铺;
    C. 正八边形每个内角是,与无论怎样也不能组成360°的角,∴不能密铺;
    D. 正十二边形每个内角是 ∴能密铺.
    故选:C.
    本题主要考查平面图形的镶嵌,根据平面镶嵌的原理:拼接点处的几个多边形的内角和恰好等于一个圆周角.
    5、C
    【解析】
    题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.
    解:根据题意,得

    故选C.
    6、A
    【解析】
    利用基本作图得到MN垂直平分AC,如图,则DA=DC,然后利用等线段代换得到△ABD的周长=AB+BC.
    【详解】
    解:由作法得MN垂直平分AC,如图,
    ∴DA=DC,
    ∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=3+4=1.
    故选:A.
    本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
    7、B
    【解析】
    根据菱形的面积=对角线之积的一半,可知菱形的面积为5×8÷2=20.
    故选B.
    8、D
    【解析】
    将y=k(x-1)化为y=kx-k后分k>0和k<0两种情况分类讨论即可.
    【详解】
    y=k(x-1)=kx-k,
    当k>0时,-k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;
    当k<0时,-k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;
    故选:D.
    考查了一次函数的性质,解题的关键是能够分类讨论.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    先提公因式m,再利用平方差公式即可分解因式.
    【详解】
    解:,
    故答案为:.
    本题考查了利用提公因式法和公式法因式分解,解题的关键是找出公因式,熟悉平方差公式.
    10、10
    【解析】
    根据平行四边形对角线的性质可得BD=2BO,AO=3,继而根据勾股定理求出BO的长即可求得答案.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴BD=2BO,AO==3,
    ∵AB⊥AC,
    ∴∠BAO=90°,
    ∴BO==5,
    ∴BD=10,
    故答案为:10.
    本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的对角线互相平分是解题的关键.
    11、
    【解析】
    把x=代入求解即可
    【详解】
    把x=代入中,得,故答案为
    熟练掌握二次根式的化简是解决本题的关键,难度较小
    12、
    【解析】
    易证得≌,则可证得结论正确;
    由≌,可得,证得,选项正确;
    证明是等腰直角三角形,求得选项正确;
    证明≌,根据正方形被对角线将面积四等分,即可得出选项正确.
    【详解】
    解:四边形ABCD是正方形,
    ,,
    在和中,

    ≌,

    故正确;
    由知:≌,



    故正确;
    四边形ABCD是正方形,
    ,,
    是等腰直角三角形,


    故正确;
    四边形ABCD是正方形,
    ,,
    在和中,

    ≌,


    故正确;
    故答案为:.
    此题属于四边形的综合题考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质注意掌握全等三角形的判定与性质是解此题的关键.
    13、正三角形
    【解析】
    沿着一条直线对折,图形两侧完全重合的是轴对称图形,绕着某一点旋转180°后能与原图形重合的是中心对称图形,根据定义逐个判断即可.
    【详解】
    线段既是轴对称图形,又是中心对称图形;
    正三角形是轴对称图形,不是中心对称图形;
    平行四边形不是轴对称图形,是中心对称图形;
    菱形既是轴对称图形,又是中心对称图形;
    只是轴对称图形的是正三角形,
    故答案为:正三角形.
    本题考查轴对称图形与中心对称图形的判断,熟练掌握定义是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)△CDF是等腰三角形;(2)∠APD=45°.
    【解析】
    (1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;
    (2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.
    【详解】
    (1)△CDF是等腰直角三角形,理由如下:
    ∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
    在△FAD与△DBC中,,
    ∴△FAD≌△DBC(SAS),
    ∴FD=DC,∴△CDF是等腰三角形,
    ∵△FAD≌△DBC,∴∠FDA=∠DCB,
    ∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
    ∴△CDF是等腰直角三角形;
    (2)作AF⊥AB于A,使AF=BD,连结DF,CF,
    如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
    在△FAD与△DBC中,
    ,∴△FAD≌△DBC(SAS),
    ∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,
    ∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
    ∴△CDF是等腰直角三角形,∴∠FCD=45°,
    ∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,
    ∴AE∥CF,∴∠APD=∠FCD=45°.
    15、(1)见解析;(2)2
    【解析】
    (1)由“SAS”可证△ABD≌△ACE;
    (2)由全等三角形的性质可得BD=CE=6,∠AEC=∠ADB=90°,由“HL”可证Rt△AEF≌Rt△ADF,可得DF=EF=2.
    【详解】
    证明:(1)由图1可知:∠DAE=∠BAC,
    ∴∠DAE+∠CAD=∠BAC+∠CAD,
    ∴∠BAD=∠CAE,
    又∵AB=AC,AD=AE,
    ∴△ABD≌△ACE(SAS);
    (2)如图2,连接AF,
    ∵AD⊥BD,
    ∴∠ADB=∠ADF=90°,
    ∵△ABD≌△ACE,
    ∴BD=CE=6,∠AEC=∠ADB=90°,
    ∴EF=CE﹣CF=2,
    ∵AF=AF,AD=AE,
    ∴Rt△AEF≌Rt△ADF(HL),
    ∴DF=EF=2.
    此题考查旋转的性质,全等三角形的判定及性质定理,熟记三角形全等的判定定理,确定对应相等的线段或角的关系由此证明三角形全等是解题的关键.
    16、(1)见解析;(2)①24,②;
    【解析】
    (1)利用平移的性质以及菱形的判定得出即可;
    (2)①首先过E作EF⊥BD交BD于F,则∠EFB=90°,证出△QOE≌△POB,利用QE=BP,得出四边形PQED的面积为定值;
    ②当∠QPR=∠BCO时,△PQR∽△CBO,此时有OP=OC=3,过O作OG⊥BC交BC于G,得出△OGC∽△BOC,利用相似三角形的性质得出CG的长,进而得出BP的长.
    【详解】
    (1)证明:∵△ABC沿BC方向平移得到△ECD,
    ∴EC=AB,AE=BC,
    ∵AB=BC,
    ∴EC=AB=BC=AE,
    ∴四边形ABCE是菱形;
    (2)①四边形PQED的面积是定值,理由如下:
    过E作EF⊥BD交BD于F,则∠EFB=90°,
    ∵四边形ABCE是菱形,
    ∴AE∥BC,OB=OE,OA=OC,OC⊥OB,
    ∵AC=6,
    ∴OC=3,
    ∵BC=5,
    ∴OB=4,sin∠OBC= ,
    ∴BE=8,
    ∴EF=BE⋅sin∠OBC=8×,
    ∵AE∥BC,
    ∴∠AEO=∠CBO,四边形PQED是梯形,
    在△QOE和△POB中

    ∴△QOE≌△POB,
    ∴QE=BP,
    ∴S = (QE+PD)×EF= (BP+DP)×EF=×BD×EF=×2BC×EF=BC×EF=5× =24;
    ②△PQR与△CBO可能相似,
    ∵∠PRQ=∠COB=90°,∠QPR>∠CBO,
    ∴当∠QPR=∠BCO时,△PQR∽△CBO,此时有OP=OC=3.
    过O作OG⊥BC交BC于G.
    ∵∠OCB=∠OCB,∠OGC=∠BOC,
    ∴△OGC∽△BOC,
    ∴CG:CO=CO:BC,
    即CG:3=3:5,
    ∴CG= ,
    ∴BP=BC−PC=BC−2CG=5−2×= .
    此题考查相似形综合题,涉及了相似三角形的判定与性质,解直角三角形,菱形的性质,平移的性质等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    17、见详解.
    【解析】
    连接AC、BD交于点O,连接EO并延长交CD于点F;由平行四边形的性质得出AB∥CD,OA=OC,证明△AEO≌△CFO,得出AE=CF,即可得出结论.
    【详解】
    解:连接AC、BD交于点O,连接EO并延长交CD于点F;
    则四边形AECF为平行四边形;理由如下:
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,OA=OC,
    ∴∠EAO=∠FCO,
    在△AEO和△CFO中, ,
    ∴△AEO≌△CFO(ASA),
    ∴AE=CF,
    又∵AE∥CF,
    ∴四边形AECF为平行四边形.
    本题考查平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
    18、(1)m=3;(2)
    【解析】
    (1)由题意将原点(0,0)代入一次函数y=(m+2)x+3- m,并求解即可;
    (2)根据题意函数图象经过第一、二、三象限,可知以及,解出不等式组即可.
    【详解】
    解:(1)∵由函数的图象经过坐标原点,可得将(0,0)代入一次函数y=(m+2)x+3- m满足条件;
    ∴,解得.
    (2)∵函数图象经过第一、二、三象限,
    ∴,解得:.
    本题考查一次函数图象的性质以及解不等式组,熟练掌握一次函数图象的性质以及解不等式组的方法是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据等腰三角形的性质和三角形的内角和即可得到结论.
    【详解】
    解:一个等腰三角形的顶角等于,
    它的底角,
    故答案为:1.
    本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.
    20、2
    【解析】
    先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.
    【详解】
    ∵x=-1,
    ∴x2+2x+1=(x+1)2=(-1+1)2=2,
    故答案为:2.
    本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.
    21、360
    【解析】
    根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.
    【详解】
    ∵△ABC中,AB=AC,
    ∴∠B=∠C,
    ∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k= ,
    ∴∠A:∠B=1:2,
    即5∠A=180°,
    ∴∠A=36°,
    故答案为:36°
    此题考查等腰三角形的性质,三角形内角和定理,解题关键在于得到5∠A=180°
    22、y=2x
    【解析】
    试题分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.
    解:∵正比例函数y=kx的图象经过一,三象限,
    ∴k>0,
    取k=2可得函数关系式y=2x.
    故答案为y=2x.
    点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.
    23、.
    【解析】
    过点作于点,根据四边形是菱形可知,可得出是等腰三角形,即可得到,再根据勾股定理求出即可得出结论.
    【详解】
    过点作于点,
    四边形是菱形,

    是等腰三角形,
    点是的中点,


    四边形是正方形,
    =6,
    6+4=10,
    .
    故答案为:.
    本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出是等腰三角形是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)140°,1°;(2)证明见解析;(3)见解析;(4)2或2.
    【解析】
    试题分析:(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=1°,根据多边形内角和定理求出∠C即可;
    (2)连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;
    (3)根据等对角四边形的定义画出图形即可求解;
    (4)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;
    ②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.
    试题解析:
    (1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=1°,
    ∴∠D=∠B=1°,
    ∴∠C=360°﹣1°﹣1°﹣70°=140°;
    (2)证明:如图2,连接BD,
    ∵AB=AD,
    ∴∠ABD=∠ADB,
    ∵∠ABC=∠ADC,
    ∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,
    ∴∠CBD=∠CDB,
    ∴CB=CD;
    (3)如图所示:
    (4)解:分两种情况:
    ①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:
    ∵∠ABC=90°,∠DAB=60°,AB=5,
    ∴∠E=30°,
    ∴AE=2AB=10,
    ∴DE=AE﹣AD=10﹣4═6,
    ∵∠EDC=90°,∠E=30°,
    ∴CD=2,
    ∴AC=;
    ②当∠BCD=∠DAB=60°时,
    过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:
    则∠AMD=90°,四边形BNDM是矩形,
    ∵∠DAB=60°,
    ∴∠ADM=30°,
    ∴AM=AD=2,
    ∴DM=2,
    ∴BM=AB﹣AM=5﹣2=3,
    ∵四边形BNDM是矩形,
    ∴DN=BM=3,BN=DM=2,
    ∵∠BCD=60°,
    ∴CN=,
    ∴BC=CN+BN=3,
    ∴AC=.
    综上所述:AC的长为或.
    故答案为:140,1.
    【点睛】四边形综合题目:考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(4)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.
    25、(1)k=6;(2)当x

    相关试卷

    湖南省衡阳市石鼓区逸夫中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】:

    这是一份湖南省衡阳市石鼓区逸夫中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省衡阳市部分中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份湖南省衡阳市部分中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,四象限,则k能取的最大整数为,解答题等内容,欢迎下载使用。

    2025届湖南省衡阳市逸夫中学九上数学开学经典试题【含答案】:

    这是一份2025届湖南省衡阳市逸夫中学九上数学开学经典试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map