湖南省澧县联考2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,直线l经过一、二、四象限,若点(2,3),(0,b),(﹣1,a),(c,﹣1)都在直线l上,则下列判断不正确的是( )
A.b>aB.a>3C.b>3D.c>0
2、(4分)在同一平面直角坐标系中,函数与的图象可能是( )
A. B.
C. D.
3、(4分)已知 x<3,则化简结果是()
A.-x-3B.x+3C.3-xD.x-3
4、(4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )
A.AE=CFB.BE=FDC.BF=DED.∠1=∠2
5、(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AD,AC的中点,若CB=4,则EF的长度为( )
A.2B.1C.D.2
6、(4分)已知一组数据的方差是3,则这组数据的标准差是( )
A.9B.3C.D.
7、(4分)某班位男同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是( )
A.B.C.D.
8、(4分)下列二次根式中属于最简二次根式的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,点在第________象限.
10、(4分)若一元二次方程有两个不相等的实数根,则k的取值范围是 .
11、(4分) “若实数满足,则”,能够说明该命题是假命题的一组的值依次为_.
12、(4分)汽车开始行驶时,油箱中有油40L,如果每小时耗油5L,则油箱内余油量y(L)与行驶时间x(h)的关系式为_____.
13、(4分)在等腰中,,,则底边上的高等于__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.
求证:四边形DEFG是平行四边形.
15、(8分)如图,在平面直角坐标系中,A9m,0、Bm,0m0,以AB为直径的⊙M交y轴正半轴于点C,CD是⊙M的切线,交x轴正半轴于点D,过A作AECD于E,交⊙于F.
(1)求C的坐标;(用含m的式子表示)
(2)①请证明:EFOB;②用含m的式子表示AFC的周长;
(3)若,,分别表示的面积,记,对于经过原点的二次函数,当时,函数y的最大值为a,求此二次函数的解析式.
16、(8分)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.
17、(10分)(1)如图1,四边形ABCD是平行四边形,E为BC上任意一点,请仅用无刻度直尺,在边AD上找点F,使.
(2)如图2,四边形ABCD是菱形,E为BC上任意一点,请仅用无刻度直尺,在边DC上找点M,使.
18、(10分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
(1)在这个变化中,自变量、因变量分别是 、 ;
(2)当点P运动的路程x=4时,△ABP的面积为y= ;
(3)求AB的长和梯形ABCD的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一次函数中,随的增大而减小,则的取值范围是______.
20、(4分)如图,一次函数的图象与坐标轴的交点坐标分别为A(0,2),B(-3,0),下列说法:①随的增大而减小;②;③关于的方程的解为;④关于的不等式的解集.其中说法正确的有_____.
21、(4分)若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m的值等于_____.
22、(4分)如图,在正方形中,点,点,,,则点的坐标为_________.(用、表示)
23、(4分)□ABCD 中,AB=6,BC=4,则□ABCD 的周长是____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,分别是边上的点,连接,且.
求证:;
如果是的中点, ,求的长,
25、(10分)已知关于x的方程2x2+kx-1=0.
(1)求证:方程有两个不相等的实数根.
(2)若方程的一个根是-1,求方程的另一个根.
26、(12分) (1)因式分解:m3n-9mn;(2)解不等式组:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
依据直线l经过一、二、四象限,经过点(2,3),(1,b),(﹣1,a),(c,﹣1),在直角坐标系中画出直线l,即可得到a>b,a>b>3,c>1.
【详解】
.解:∵直线l经过一、二、四象限,经过点(2,3),(1,b),(﹣1,a),(c,﹣1),
∴画图可得:
∴a>b>3,c>1,
故选A.
本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.
2、C
【解析】
根据一次函数及二次函数的图像性质,逐一进行判断.
【详解】
解:A.由一次函数图像可知a>0,因此二次函数图像开口向上,但对称轴应在y轴左侧,故此选项错误;
B. 由一次函数图像可知a<0,而由二次函数图像开口方向可知a>0,故此选项错误;
C. 由一次函数图像可知a<0,因此二次函数图像开口向下,且对称轴在y轴右侧,故此选项正确;
D. 由一次函数图像可知a>0,而由二次函数图像开口方向可知a<0,故此选项错误;
故选:C.
本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.
3、C
【解析】
被开方数可以写成完全平方式,根据二次根式的性质,x<3去绝对值即可.
【详解】
解: ∵x<3, ∴3-x>0,
∴原式=.
故选C.
本题考查了二次根式的化简,注意二次根式的结果为非负数,解题的关键是要掌握二次根式的性质: .
4、C
【解析】
试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,
若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.
考点:1.平行四边形的性质2.全等三角形的判定.
5、A
【解析】
根据直角三角形的性质求出CD,根据三角形中位线定理计算即可.
【详解】
解:∵∠ACB=90°,∠A=30°,
∴AB=2BC=8,
∵∠ACB=90°,D为AB的中点,
∴CD=AB=4,
∵E,F分别为AD,AC的中点,
∴EF=CD=2,
故选:A.
本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
6、D
【解析】
根据标准差的定义求解即可
【详解】
因为这组数据的方差是3,所以这组数据的标准差是.
故答案为:D
本题考查标准差的计算,标准差是方差的算术平方根.
7、C
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:数据1出现了10次,次数最多,所以众数为1,
一共有20个数据,位置处于中间的数是:1,1,所以中位数是(1+1)÷2=1.
故选:C.
本题考查了确定一组数据的中位数和众数的能力.解题的关键是熟练掌握求中位数和众数的方法.
8、A
【解析】
利用最简二次根式定义判断即可.
【详解】
A、,是最简二次根式,符合题意;
B、,不是最简二次根式,不符合题意;
C、,不是最简二次根式,不合题意;
D、,,不是最简二次根式,不合题意.
故选A.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、二
【解析】
根据各象限内点的坐标特征解答.
【详解】
解:点位于第二象限.
故答案为:二.
本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
10、:k<1.
【解析】
∵一元二次方程有两个不相等的实数根,
∴△==4﹣4k>0,
解得:k<1,
则k的取值范围是:k<1.
故答案为k<1.
11、1,2,1
【解析】
列举一组数满足a<b<c,不满足a+b<c即可.
【详解】
解:当a=1,b=2,c=1时,满足a<b<c,不满足a+b<c,
所以说明该命题是假命题的一组a,b,c的值依次为1,2,1.
故答案为1,2,1.
本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
12、y=40-5x
【解析】
直接利用汽车耗油量结合油箱的容积,进而得出油箱内剩余油量y(L)与行驶时间x(h)的关系式.
【详解】
由题意可得:y=40-5x.
故答案为y=40-5x.
此题主要考查了函数关系式,根据汽车耗油量得出函数关系式是解题关键.
13、
【解析】
根据题意画出以下图形,然后根据等腰三角形性质得出BD=DC=1,进而利用勾股定理求出AD即可.
【详解】
如图所示,AB=AC=3,BC=2,AD为底边上的高,
根据等腰三角形性质易得:BD=CD=1,
∴在Rt△ADC中,=.
故答案为:.
本题主要考查了等腰三角形性质以及勾股定理的运用,熟练掌握相关概念是解题关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
利用三角形中线的性质、中位线的定义和性质证得四边形EFGD的对边DE∥GF,且DE=GF=BC;然后由平行四边形的判定--对边平行且相等的四边形是平行四边形,证得结论.
【详解】
证明:如图,连接ED、DG、GF、FE.
∵BD、CE是△ABC的两条中线,
∴点D、E分别是边AC、AB的中点,
∴DE∥CB,DE=CB;
又∵F、G分别是OB、OC的中点,
∴GF∥CB,GF=CB;
∴DE∥GF,且DE=GF,
∴四边形DEFG是平行四边形(对边平行且相等的四边形是平行四边形).
考查了三角形中位线定理、平行四边形的判定.平行四边形的判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.
15、(1)C(0,3m);
(2)①证明见解析;②8m+;
(3) 或
【解析】
(1)连接MC,先得出MC=5m,MO=4m,再由勾股定理得出OC=3m,即可得出点C的坐标;
(2)①由弦切角定理得∠ECF=∠EAC,再证出FC=BC,再证出△CEF≌△COB,可得到EF=OB;
②由△CEF≌△COB可得AE=AO,用勾股定理求出AC、BC.再用等量代换计算可得到AFC的周长
(3)先用三角函数求出OD,再用勾股定理列出方程,得到m=1,从而求得的面积,再求出k值。再根据二次函数的性质列出方程求得a的值,从而问题得解。
【详解】
解:(1)连接MC,
∵A9m,0、Bm,0m0,
∴AB=10m,MC=5m,MO=4m
由勾股定理得
解得:OC=3m
∴C(0,3m)
(2)①证明:连接CF,
∵CE是⊙M的切线,
∴∠ECF=∠EAC,
∵AB是直径,
∴∠ACB=90°
∴∠CAB=∠BCO,
∵A,F,C,B共圆,
∴∠EFC=∠OBC,
又∵AE⊥CE
∴∠CEF=∠BOC=90°,
∴∠ECF=∠BCO,
∴∠EAC=∠CAB
∴CF=CB
在△CEF和△COB中
∴△CEF≌△COB
∴EF=BO
②∵△CEF≌△COB
∴CE=CO,
∴△ACE≌△ACO(HL)
∴AE=AO
∵
AFC的周长=AF+FC+AC=AE-EF+FC+AC
=AO-BO+FC+AC
=9m-m++
=8m+
(3)∵CD是⊙M的切线,
易证∠OCD=∠OMC
∴sin∠OMC= sin∠OCD
即
得
在Rt△OCD中,
而CO=3m
∴m=1
∴AF=8,CE=3,
∴
二次函数的图象过原点,则c=0
得
对称轴为直线
当时,即
分两种情况,a<0时,由函数的性质可知,时,y=a,
∴
解得
∴此二次函数的解析式为:
A>0时,由函数的性质可知,x=4时,y=a,
∴a=16a-4
解得
∴此二次函数的解析式为:
综上,此二次函数的解析式为:或
故答案为:或
本题是一个难度较大的综合题,考查了二次函数的性质,圆的切线,圆周角定理,也考查了利用三角函数解直角三角形的知识,综合性强,需要认真理解题意,灵活运用所学知识分析和解题。
16、2.
【解析】
试题分析:延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF,然后求解即可.
试题解析:如图,延长BD交AC于点F,
∵AD平分∠BAC,
∴∠BAD=∠CAD.
∵BD⊥AD,∴∠ADB=∠ADF,
又∵AD=AD,
∴△ADB≌△ADF(ASA).
∴AF=AB=6,BD=FD.
∵AC=10,∴CF=AC-AF=10-6=4.
∵E为BC的中点,∴DE是△BCF的中位线.
∴DE=CF=×4=2.
17、(1)答案见解析;(2)答案见解析.
【解析】
(1)先连接AC、BD,再连接对角线交点O与E点与DA的交点F即为所求;
(2)连接AC,DE交于点O,再连接O点与B点交CD于M点,M点即为所求.
【详解】
解:(1)如下图,点F即为所求:
(2)如下图,点M即为所求:
本题考查的是无刻度尺规作图,主要用到的知识点为三角形全等的判定与性质.
18、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.
【解析】
(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;
(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;
(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.
【详解】
(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.
故答案为x,y;
(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.
故答案为2;
(3)根据图象得:BC=4,此时△ABP为2,∴AB•BC=2,即×AB×4=2,解得:AB=8;
由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.
本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
在中,当时随的增大而增大,当时随的增大而减小.由此列不等式可求得的取值范围.
【详解】
解:一次函数是常数)中随的增大而减小,
,解得,
故答案为:.
本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,
20、②④
【解析】
根据一次函数的性质,一次函数与一元一次方程的关系,一次函数与一元一次不等式的关系对个小题分析判断即可得解.
【详解】
解:根据一次函数的图象可知y随x的增大而增大,故①错误;
因为一次函数的图象与y轴的交点A(0,2),所以b=2,故②正确;
因为一次函数的图象与x轴的交点B(-3,0),所以关于的方程的解为,故③错误;
因为一次函数的图象与x轴的交点B(-3,0)结合图象可知关于的不等式的解集,故④正确;
故答案为:②④.
本题考查一次函数与坐标轴交点问题,一次函数与一元一次方程的关系,一次函数与一元一次不等式的关系.掌握数形结合思想是解决此题的关键.
21、2
【解析】
试题分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.把x=1代入方程,即可得到一个关于m的方程,从而求得m的值,还要注意一元二次方程的系数不能等于1.
试题解析:把x=1代入(m-1)x2+5x+m2-3m+2=1中得:
m2-3m+2=1,
解得:m=1或m=2,
∵m-1≠1,
∴m≠1,
∴m=2.
考点:一元二次方程的解.
22、(b,a+b).
【解析】
先根据A,B坐标,进而求出OA=a,OB=b,再判断出△BCE≌△BAO,即可求出点C坐标.
【详解】
∵A(a,0),B(0,b),
∴OA=a,OB=b,
过点C作CE⊥OB于E,如图,
∴∠BEC=∠BOA=90°,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴∠CBE+∠ABO=90°,
∵∠BCE+∠CBE=90°
∴∠BCE=∠ABO
在△ABO和△BCE中,
,
∴△ABO≌△BCE,
∴CE=OB=b,BE=OA=a,
∴OE=OB+BE=a+b,
∴C(b,a+b).
本题主要考查了图形与坐标,解题的关键是掌握正方形的性质以及全等三角形的判定和性质.
23、1
【解析】
根据平行四边形的对边相等,可得AB=CD,AD=BC,所以可求得的周长为1.
【详解】
∵四边形ABCD是平行四边形,
∴CD=AB=6,AD=BC=4,
∴的周长为1.
故答案为1.
本题考查平行四边形的性质:平行四边形的对边相等.
二、解答题(本大题共3个小题,共30分)
24、见解析;
【解析】
(1)根据两角对应相等两个三角形相似即可得证.
(2)根据点E是AC的中点,设AE=x,根据相似三角形的性质可知,从而列出方程解出x的值.
【详解】
证明:
.
由知
点是的中点,设,
解得(不和题意舍去).
本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题.
25、 (1)证明见解析;(2).
【解析】
(1)计算得到根的判别式大于0,即可证明方程有两个不相等的实数根;
(2)利用根与系数的关系可直接求出方程的另一个根.
【详解】
解:(1)∵△=k2+8>0,
∴不论k取何值,该方程都有两个不相等的实数根;
(2)设方程的另一个根为x1,
则,
解得:,
∴方程的另一个根为.
本题是对根的判别式和根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
26、(1);(2).
【解析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解:(1)原式;
(2),
由①得:,
由②得:,
则不等式组的解集为.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
题号
一
二
三
四
五
总分
得分
尺码数
人数
湖南省娄底新化县联考2025届数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份湖南省娄底新化县联考2025届数学九年级第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省娄底娄星区四校联考2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份湖南省娄底娄星区四校联考2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省涟源市2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份湖南省涟源市2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。