湖南省浏阳市浏阳河中学2024-2025学年九上数学开学统考模拟试题【含答案】
展开
这是一份湖南省浏阳市浏阳河中学2024-2025学年九上数学开学统考模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四个图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
2、(4分)计算+的值等于( )
A.B.4C.5D.2+2
3、(4分)如图,中,,,将绕点顺时针旋转得到出,与相交于点,连接,则的度数为( )
A.B.C.D.
4、(4分)若直线经过第一、二、四象限,则化简的结果是 ( )
A.2 kB.2 kC.k 2D.不能确定
5、(4分)函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
6、(4分)下列图案中是轴对称图形的是( )
A.B.C.D.
7、(4分) “凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )
A.x(x+1)=210B.x(x﹣1)=210
C.2x(x﹣1)=210D.x(x﹣1)=210
8、(4分)若将 (a、b均为正数)中的字母a、b的值分别扩大为原来的3倍,则分式的值( )
A.扩大为原来的3倍B.缩小为原来的
C.不变D.缩小为原来的
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,平面直角坐标系中,已知直线上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴.垂足为B,直线AB与直线交于点A,且BD=2AD,连接CD,直线CD与直线交于点Q,则点Q的坐标为_______.
10、(4分)某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.
11、(4分)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为 .
12、(4分)若二次根式在实数范围内有意义,则x的取值范围是_____.
13、(4分)化简分式:=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知中,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从向方向运动,到达点后,点也停止运动,设点运动的时间为秒.
(1)求点停止运动时,的长;
(2) 两点在运动过程中,点是点关于直线的对称点,是否存在时间,使四边形为菱形?若存在,求出此时的值;若不存在,请说明理由.
(3) 两点在运动过程中,求使与相似的时间的值.
15、(8分)如图,已知函数的图象为直线,函数的图象为直线,直线、分别交轴于点和点,分别交轴于点和,和相交于点
(1)填空: ;求直线的解析式为 ;
(2)若点是轴上一点,连接,当的面积是面积的2倍时,请求出符合条件的点的坐标;
(3)若函数的图象是直线,且、、不能围成三角形,直接写出的值.
16、(8分)如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.
(1)求证:四边形DEFG是平行四边形;
(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.
17、(10分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.
18、(10分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.
(1)求证:∠A=∠AEB;
(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当二次根式的值最小时,x=______.
20、(4分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是_____.
21、(4分)如图,在中,和的角平分线相交于点,若,则的度数为______.
22、(4分)正方形的对角线长为,则它的边长为_________。
23、(4分)计算:﹣=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)直线是同一平面内的一组平行线.
(1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;
(2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.
①求证:;
②设正方形的面积为,求证.
25、(10分)计算:
(1)
(2).
26、(12分)如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.
(1)求点C的坐标及直线BC的函数表达式;
(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.
①若∠BDE=45°,求BDE的面积;
②在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据定义进行分析即可.
【详解】
解:A、既是轴对称图形又是中心对称图形,故此选项正确;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选:A.
此题主要考查了中心对称图形和轴对称图形,关键是掌握中心对称图形和轴对称图形的定义.
2、C
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
解:原式=2+3
=5
故选C.
本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.
3、C
【解析】
由旋转的性质可得AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°,由等腰三角形的性质可得∠AA'C=70°=∠A'AC,即可求解.
【详解】
∵将△ABC绕点C顺时针旋转40°得到△A′B′C,
∴△ABC≌△A′B′C
∴AC=A′C,∠ACA′=40∘,∠BAC=∠B′A′C=90°,
∴∠AA′C=70°=∠A′AC
∴∠B′A′A=∠B′A′C−∠AA′C=20°
故选C.
此题考查旋转的性质,等腰三角形的性质,解题关键在于得出得∠AA'C=70°=∠A'AC.
4、B
【解析】
根据一次函数图像的性质,函数图像过一、二、四象限,则k<0.b>0.并考察了绝对值的性质.
【详解】
∵直线y=kx+2经过第一、二、四象限,
∴k<0,
∴k-2<0,
∴|k-2|=2-k,
故选B.
本题考查了一次函数图像的性质,难点在于根据函数所过象限确定系数的值.
5、B
【解析】
根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.
【详解】
解:一次函数y=x﹣2,
∵k=1>0,
∴函数图象经过第一三象限,
∵b=﹣2<0,
∴函数图象与y轴负半轴相交,
∴函数图象经过第一三四象限,不经过第二象限.
故选B.
6、D
【解析】
根据轴对称图形的概念求解即可.
【详解】
A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、不是轴对称图形,故此选项错误;
D、是轴对称图形,故此选项正确.
故选:D.
本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
7、B
【解析】
设全组共有x名同学,那么每名同学送出的图书是(x−1)本;
则总共送出的图书为x(x−1);
又知实际互赠了210本图书,
则x(x−1)=210.
故选:B.
8、D
【解析】
根据分式的基本性质,可得答案
【详解】
将分式 (a,b均为正数)中a,b的值分别扩大为原来的3倍,则分式的值缩小为原来的
故选D.
本题考查分式的基本性质,掌握运算法则是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
如图,过点P 作EF∥x轴,交y轴与点E,交AB于点F,则
易证△CEP≌△PFD(ASA),
∴EP=DF,
∵P(1,1),
∴BF=DF=1,BD=2,
∵BD=2AD,
∴BA=3
∵点A在直线上,∴点A的坐标为(3,3),
∴点D的坐标为(3,2),∴点C的坐标为(0,3),
设直线CD的解析式为,
则解得:
∴直线CD的解析式为,
联立可得
∴点Q的坐标为.
10、2
【解析】
设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.
【详解】
解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,
解得, ,
则y=30x-1.
当y=0时,
30x-1=0,
解得:x=2.
故答案为:2.
本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.
11、2
【解析】
根据题意PD=t,则PA=10-t,首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题,
【详解】
解:如图,根据题意PD=t,则PA=10−t,
∵B、E、P共线,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=10,
在Rt△ABP中,
∵,
∴,
∴t=2或18(舍去),
∴PD=2,
∴t=2时,B、E、P共线;
故答案为:2.
本题主要考查了矩形的性质,轴对称的性质,掌握矩形的性质,轴对称的性质是解题的关键.
12、x>2019
【解析】
根据二次根式的定义进行解答.
【详解】
在实数范围内有意义,即x-2019 0,所以x的取值范围是x 2019.
本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.
13、-
【解析】
将分子变形为﹣(x﹣y),再约去分子、分母的公因式x﹣y即可得到结论.
【详解】
==﹣.
故答案为﹣.
本题主要考查分式的约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
三、解答题(本大题共5个小题,共48分)
14、(1)(2)(3)或
【解析】
(1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.
(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.
(3)分两种情形:如图3-1中,当∠APQ=90°时,如图3-2中,当∠AQP=90°时,分别构建方程即可解决问题.
【详解】
(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,
∴AB==10,
点Q运动到点A时,t==5,
∴AP=5,PC=1,
在Rt△PBC中,PB=.
(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.
∵四边形PQCE是菱形,
∴PC⊥EQ,PK=KC,
∵∠QKC=∠QDC=∠DCK=90°,
∴四边形QDCK是矩形,
∴DQ=CK,
∴,
解得t=.
∴t=s时,四边形PQCE是菱形.
(3)如图2中,当∠APQ=90°时,
∵∠APQ=∠C=90°,
∴PQ∥BC,
∴,
∴,
∴.
如图3中,当∠AQP=90°时,
∵△AQP∽△ACB,
∴,
∴,
∴,
综上所述,或s时,△APQ是直角三角形.
本题属于相似形综合题,考查了菱形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.
15、(1),直线的解析式为;(2)点的坐标为或;(3)的值为或或.
【解析】
(1)将点坐标代入中,即可得出结论;将点,坐标代入中,即可得出结论;
(2)先利用两三角形面积关系判断出,再分两种情况,即可得出结论;
(3)分三种情况,利用两直线平行,相等或经过点讨论即可得出结论.
【详解】
解:(1)点在函数的图象上,
,
,
直线过点、,
可得方程组为,
解得,
直线的解析式为;
故答案为:;
(2)是与轴的交点,当时,,
,坐标为,
又的面积是面积的2倍,
第一种情况,当在线段上时,
,
,即,
∴,
坐标,
第二种情况,当在射线上时,
,
,
,
坐标,
点的坐标为或;
(3)、、不能围成三角形,
直线经过点或或,
①直线的解析式为,
把代入到解析式中得:
,
,
②当时,
∵直线的解析式为,
,
③当时,
∵直线的解析式为,
,
即的值为或或.
此题是一次函数综合题,主要考查了坐标轴上点的特点,待定系数法,三角形的面积的求法,用分类讨论的思想解决问题是解本题的关键.
16、(1)证明见解析;(2)1
【解析】
(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DG=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可.
(2)想办法证明OM=MF=ME即可解决问题.
【详解】
(1)证明:∵D、G分别是AB、AC的中点,
∴DG∥BC,DG=BC,
∵E、F分别是OB、OC的中点,
∴EF∥BC,EF=BC,
∴DG=EF,DG∥EF,
∴四边形DEFG是平行四边形;
(2)∵OB⊥OC,
∴∠BOC=90°,
∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,
∴∠COM=∠OCB,
∵EF∥BC,
∴∠OFE=∠OCB,
∴∠MOF=∠MFO,
∴OM=MF,
∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,
∴∠EOM=∠MEO,
∴OM=EM,
∴EF=2OM=1.
由(1)有四边形DEFG是平行四边形,
∴DG=EF=1.
本题考查平行四边形的判定与性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形.
17、(1)证明见解析(2)△CEF是直角三角形
【解析】
(1)由正方形的性质、等腰三角形的性质可得AB=CB,BE=BF,再通过等量相减,即可得出∠ABF=∠CBE,由SAS即可证出△ABF≌△CBE;
(2)求∠CEF=90°,即可证出△CEF是直角三角形.
证明:(1)∵四边形ABCD是正方形,
∴AB=CB,∠ABC=90°,
∵△EBF是等腰直角三角形,其中∠EBF=90°,
∴BE=BF,
∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,
∴∠ABF=∠CBE.
在△ABF和△CBE中,有 ,
∴△ABF≌△CBE(SAS).
(2)△CEF是直角三角形.理由如下:
∵△EBF是等腰直角三角形,
∴∠BFE=∠FEB=45°,
∴∠AFB=180°﹣∠BFE=135°,
又∵△ABF≌△CBE,
∴∠CEB=∠AFB=135°,
∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,
∴△CEF是直角三角形.
18、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据圆内接四边形的性质可得,根据邻补角互补可得,进而得到,然后利用等边对等角可得,进而可得;
(2)首先证明是等边三角形,进而可得,再根据,可得△ABE是等腰三角形,进而可得△ABE是等边三角形.
【详解】
解:(1)∵四边形ABCD是⊙O的内接四边形,
∴,
∵,
∴,
∵DC=DE,
∴,
∴;
(2)∵,
∴△ABE是等腰三角形,
∵EO⊥CD,
∴CF=DF,
∴EO是CD的垂直平分线,
∴ED=EC,
∵DC=DE,
∴DC=DE=EC,
∴△DCE是等边三角形,
∴,
∴△ABE是等边三角形.
本题考查圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
直接利用二次根式的定义分析得出答案.
【详解】
∵二次根式的值最小,
∴2x﹣6=0,解得:x=1,
故答案为1.
本题主要考查了二次根式的定义,正确把握定义是解题关键.
20、.
【解析】
首先,需要证明线段B1B2就是点B运动的路径(或轨迹),如图1所示.利用相似三角形可以证明;其次,证明△APN∽△AB1B2,列比例式可得B1B2的长.
【详解】
解:如图1所示,当点P运动至ON上的任一点时,设其对应的点B为Bi,连接AP,ABi,BBi,
∵AO⊥AB1,AP⊥ABi,
∴∠OAP=∠B1ABi,
又∵AB1=AO•tan30°,ABi=AP•tan30°,
∴AB1:AO=ABi:AP,
∴△AB1Bi∽△AOP,
∴∠B1Bi=∠AOP.
同理得△AB1B2∽△AON,
∴∠AB1B2=∠AOP,
∴∠AB1Bi=∠AB1B2,
∴点Bi在线段B1B2上,即线段B1B2就是点B运动的路径(或轨迹).
由图形2可知:Rt△APB1中,∠APB1=30°,
∴
Rt△AB2N中,∠ANB2=30°,
∴
∴
∵∠PAB1=∠NAB2=90°,
∴∠PAN=∠B1AB2,
∴△APN∽△AB1B2,
∴,
∵ON:y=﹣x,
∴△OMN是等腰直角三角形,
∴OM=MN=,
∴PN=,
∴B1B2=,
综上所述,点B运动的路径(或轨迹)是线段B1B2,其长度为.
故答案为:.
本题考查动点问题,用到了三角形的相似、和等腰三角形的性质,解题关键是找出图形中的相似三角形,利用对应边之比相等进行边长转换.
21、70°
【解析】
根据三角形的内角和等于180°,求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和等于180°,列式计算即可得解.
【详解】
解:∵,
∴∠OBC+∠OCB=180°-125°=55°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠ABC+∠ACB=2(∠OBC+∠OCB)=110°,
∴∠A=180°-110°=70°;
故答案为:70°.
此题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.
22、4
【解析】
由正方形的性质求出边长,即可得出周长.
【详解】
如图所示:
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠B=90°,
∴AB+BC=AC,
∴AB= =4,
故答案为:4
此题考查正方形的性质,解题关键在于利用勾股定理
23、
【解析】
根据二次根式的性质,进行计算即可解答
【详解】
解:﹣.
故答案为:﹣ .
此题考查二次根式的化简,解题关键在于掌握运算法则
二、解答题(本大题共3个小题,共30分)
24、(1)9或5;(2)①见解析,②见解析
【解析】
(1)分两种情况:①如图1-1,得出正方形ABCD的边长为2,求出正方形ABCD的面积为9;
②如图1-2,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,证明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;
(2)①过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,证明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;
②由①得出AE=BF=h2+h2=h2+h1,得出正方形ABCD的面积S=AB2=AE2+BE2,即可得到答案.
【详解】
解:(1)①如图,当点分别在上时,面积为:;
②如图,当点分别在上时,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∵∠CBF+∠BCF=90°,
∴∠ABE=∠BCF,
在△ABE和△BCF中
,
∴△ABE≌△BCF(AAS),
∴AE=BF=2,
∴AB=,
∴正方形ABCD的面积=AB2=5;
综上所述,正方形ABCD的面积为9或5;
(2)①证明:过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,如图所示:则EF⊥l4,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∵∠CBF+∠BCF=90°,
∴∠ABE=∠BCF,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(AAS),
∴AE=BF,
同理△CDM≌△BCF(AAS),
∴△ABE≌△CDM(AAS),
∴BE=DM,
即h1=h2.
②解:由①得:AE=BF=h2+h2=h2+h1,
∵正方形ABCD的面积:S=AB2=AE2+BE2,
∴S=(h2+h1)2+h12=2h12+2h1h2+h3.
本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.
25、(1);(1)
【解析】
(1)先把各二次根式化为最简二次根式,然后合并即可;
(1)利用平方差和完全平方公式计算.
【详解】
解:(1)原式=3﹣+1
=;
(1)原式=()1+1+1﹣[()1﹣1]
=5+1+1﹣5+1
=1+1.
故答案为:(1);(1)1+1.
本题考查了二次根式的混合运算.
26、(1)C(-3,0),y=2x+1;(2)①;②(0,7)或(0,-1)
【解析】
(1)利用等腰三角形的三线合一的性质求出点C的坐标,再利用待定系数法求解即可.
(2)①如图,取点Q(-1,3),连接BQ,DQ,DQ交AB于E.证明△QDB是等腰直角三角形,求出直线QD的解析式即可解决问题.
②分两种情形:点F落在直线BC上,点F′落在直线BC上,分别求解即可.
【详解】
解:(1)∵直线y=﹣2x+1交x轴于点A,交轴于点B,
∴A(3,0),B(0,1),
∴OA=3,OB=1,
∵AB=BC,
OB⊥AC,
∴OC=OA=3,
∴C(-3,0),
设直线BC的解析式为y=kx+b,则有,
解得,
∴直线BC的解析式为y=2x+1.
(2)①如图,取点Q(-1,3),连接BQ,DQ,DQ交AB于E.
∵D(a,2)在直线y=﹣2x+1上,
∴2=﹣2a+1,
∴a=2,
∴D(2,2),
∵B(0,1),
∴,,,
∴BD2=QB2+QD2,QB=QD,
∴∠BQD=90°,∠BDQ=45°,
∵直线DQ的解析式为,
∴E(0,),
∴OE=,BE=1﹣=,
∴.
②如图,过点D作DM⊥OA于M,DN⊥OB于N.
∵四边形DEGF是正方形,
∴∠EDF=90°,ED=DF,
∵∠EDF=∠MDN=90°,
∴∠EDN=∠DFM,
∵DE=DF,DN=DM,
∴△DNE≌△DMF(SAS),
∴∠DNE=∠DMF=90°,EN=FM,
∴点F在x轴上,
∴当点F与C重合时,FM=NE=5,此时E(0,7),
同法可证,点F′在直线y=4上运动,当点F′落在BC上时,E(0,﹣1),
综上所述,满足条件的点E的坐标为(0,7)或(0,﹣1).
本题属于一次函数综合题,考查了一次函数的性质,等腰三角形的性质,正方形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于压轴题.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份湖南省浏阳市浏阳河中学2024-2025学年数学九年级第一学期开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省岳阳市岳阳县数学九上开学统考模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省凤凰皇仓中学数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。