终身会员
搜索
    上传资料 赚现金

    湖南省汨罗市沙溪中学2025届数学九上开学监测试题【含答案】

    立即下载
    加入资料篮
    湖南省汨罗市沙溪中学2025届数学九上开学监测试题【含答案】第1页
    湖南省汨罗市沙溪中学2025届数学九上开学监测试题【含答案】第2页
    湖南省汨罗市沙溪中学2025届数学九上开学监测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省汨罗市沙溪中学2025届数学九上开学监测试题【含答案】

    展开

    这是一份湖南省汨罗市沙溪中学2025届数学九上开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)二次根式中的取值范围是( )
    A.B.C.D.
    2、(4分)下列代数式属于分式的是( )
    A.B.3yC.D.+y
    3、(4分)通过估算,估计的大小应在( )
    A.7~8之间B.8.0~8.5之间
    C.8.5~9.0之间D.9~10之间
    4、(4分)下列下列算式中,正确的是( )
    A.B.
    C.D.
    5、(4分)如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论:①∠AED=∠ADC;② ;③ACBE=12;④3BF=4AC;其中正确结论的个数有( )
    A.1个B.2个C.3个D.4个
    6、(4分)下列从左到右的变形是分解因式的是( )
    A.B.
    C.D.
    7、(4分)如图所示,一场台风过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2,则树高为( )米.
    A.1+B.1+C.2-1D.3
    8、(4分)己知直角三角形一个锐角60°,斜边长为2,那么此直角三角形的周长是( )
    A.B.3C.+2D.+3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若代数式在实数范围内有意义,则x的取值范围为_____.
    10、(4分)如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件_______时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)
    11、(4分)已知是一元二次方程x2-4x+c=0的一个根,则方程的另一个根是______.
    12、(4分)当x=________时,分式的值为零.
    13、(4分)把二次函数y= -2x2-4x-1的图象向上平移3个单位长度,再向右平移4个单位长度,则两次平移后的图象的解析式是 _____________;
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解方程.
    15、(8分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
    (1)求证:四边形PBQD是平行四边形;
    (2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向D运动(不与D重合),设点P运动时间为t秒.
    ①请用t表示PD的长;②求t为何值时,四边形PBQD是菱形.
    16、(8分)求证:等腰三角形的底角必为锐角. (请根据题意画出图形,写出已知、求证,并证明)
    已知:
    求证:
    证明:
    17、(10分)解下列方程:
    (1)x2﹣3x=1.
    (2)(x﹣3)(x﹣1)=2.
    18、(10分)化简求值:已知,求的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分) “同旁内角互补,两直线平行”的逆命题是_____________________________.
    20、(4分)已知在等腰梯形中,,,对角线,垂足为,若,,梯形的高为______.
    21、(4分)观察式子,,,……,根据你发现的规律可知,第个式子为______.
    22、(4分)如图,在矩形中,,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为__________.
    23、(4分)在中,,,点是中点,点在上,,将沿着翻折,点的对应点是点,直线与交于点,那么的面积__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在中,是它的一条对角线,过、两点分别作,,、为垂足.求证:四边形是平行四边形.
    25、(10分)在正方形中,点是边上一个动点,连结,,点,分别为,的中点,连结交直线于点E.
    (1)如图1,当点与点重合时,的形状是_____________________;
    (1)当点在点M的左侧时,如图1.
    ①依题意补全图1;
    ②判断的形状,并加以证明.
    26、(12分)某车行经销的A型自行车去年6月份销售总额为1.6万元,今年由于改造升级每辆车售价比去年增加200元,今年6月份与去年同期相比,销售数量相同,销售总额增加25%.
    今年A,B两种型号车的进价和售价如下表:
    (1)求今年A型车每辆售价多少元?
    (2)该车行计划7月份用不超过4.3万元的资金新进一批A型车和B型车共50辆,应如何进货才能使这批车售完后获利最多?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由二次根式有意义的条件得:被开方数为非负数可得答案.
    【详解】
    解:由有意义,则,解得:.
    故选D.
    本题考查的是二次根式有意义的条件,掌握被开方数为非负数是解题的关键.
    2、C
    【解析】
    判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
    【详解】
    解:A. 不是分式,故本选项错误,
    B. 3y不是分式,故本选项错误,
    C. 是分式,故本选项正确,
    D. +y不是分式,故本选项错误,
    故选:C.
    本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.
    3、C
    【解析】
    先找到所求的无理数在哪两个和它接近的有理数之间,然后判断出所求的无理数的范围.
    【详解】
    解:∵64<1<81,
    ∴89,排除A和D,
    又∵8.52=72.25<1.
    故选C.
    4、B
    【解析】
    根据二次根式的加减运算法则和二次根式的性质逐项计算化简进行判断.
    【详解】
    解:A项,与不是同类二次根式,不能合并,故本选项错误;
    B项,,正确;
    C项,,故本选项错误;
    D项,,故本选项错误;
    故选B.
    本题考查了二次根式的性质和加减运算,正确的进行二次根式的化简和根据加减运算法则进行计算是解题的关键.
    5、C
    【解析】
    选项①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,∠EAD=∠DAC;
    ②易证△ADE∽△ACD,得DE:DA=DC:AC=3:AC,AC不一定等于6;
    ③根据相似三角形的判定定理得出△BED∽△BDA,再由相似三角形的对应边成比例即可得出结论;
    ④连接DM,可证DM∥BF∥AC,得FM:MC=BD:DC=4:3;易证△FMB∽△CMA,得比例线段求解.
    【详解】
    ∠AED=90°−∠EAD,∠ADC=90°−∠DAC,
    ∵AD平分∠BAC
    ∴∠EAD=∠DAC,
    ∴∠AED=∠ADC.
    故①选项正确;
    ∵∠EAD=∠DAC,∠ADE=∠ACD=90°,
    ∴△ADE∽△ACD,得DE:DA=DC:AC=3:AC,但AC的值未知,
    故②不一定正确;
    由①知∠AED=∠ADC,
    ∴∠BED=∠BDA,
    又∵∠DBE=∠ABD,
    ∴△BED∽△BDA,
    ∴DE:DA=BE:BD,由②知DE:DA=DC:AC,
    ∴BE:BD=DC:AC,
    ∴AC⋅BE=BD⋅DC=12.
    故③选项正确;
    连接DM,则DM=MA.
    ∴∠MDA=∠MAD=∠DAC,
    ∴DM∥BF∥AC,
    由DM∥BF得FM:MC=BD:DC=4:3;
    由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,
    ∴3BF=4AC.
    故④选项正确.
    综上所述,①③④正确,共有3个.
    故选C.
    此题考查相似三角形的判定与性质,角平分线的性质,解题关键在于作辅助线.
    6、C
    【解析】
    根据把一个多项式写成几个整式积的形式叫做因式分解对各选项分析判断后利用排除法求解.
    【详解】
    A. ,故错误;
    B. ,等式右边不是整式积的形式,故不是分解因式,故本选项错误;
    C. ,符合因式分解的意义,是因式分解,故本选项正确;
    D. ,故错误.
    故选C.
    本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,熟记因式分解的定义是解题的关键.
    7、A
    【解析】
    根据题意利用勾股定理得出BC的长,进而得出答案.
    【详解】
    解:由题意得:在直角△ABC中,
    AC2+AB2=BC2,
    则12+22=BC2,
    ∴BC=,
    ∴树高为:(1+)m.
    故选:A.
    此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.
    8、D
    【解析】
    根据直角三角形的性质及勾股定理即可解答.
    【详解】
    如图所示,
    Rt△ABC中,AB=2,


    故此三角形的周长是+3.
    故选:D.
    考查勾股定理,含30度角的直角三角形,熟练掌握含30度角的直角三角形的性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x≥﹣2且x≠1.
    【解析】
    根据被开方式是非负数,且分母不等于零解答即可.
    【详解】
    若代数式在实数范围内有意义,则x+2≥0且x﹣1≠0,
    解得:x≥﹣2且x≠1.
    故答案为:x≥﹣2且x≠1.
    本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
    10、AC=BC
    【解析】由已知可得四边形的四个角都为直角,根据有一组邻边相等的矩形是正方形,可知添加条件为AC=BC时,能说明CE=CF,即此四边形是正方形.
    11、
    【解析】
    【分析】由于已知方程的一根,并且一次项系数也已知,根据两根之和公式可以求出方程的另一根.
    【详解】设方程的另一根为x1,由x1+2-=4,得x1=2+.
    故答案为2+.
    【点睛】根据方程中各系数的已知情况,合理选择根与系数的关系式是解决此类题目的关键.
    12、3
    【解析】
    根据分式值为0的条件:分子为0,分母不为0,即可得答案.
    【详解】
    ∵分式的值为零,
    ∴x-3=0,x+5≠0,
    解得:x=3,
    故答案为:3
    本题考查分式值为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式值为0的条件是解题关键.
    13、y= -2x2+12x-2
    【解析】
    先把抛物线化为顶点式,再按照“左加右减,上加下减”的规律,即可求出平移后的函数表达式.
    【详解】
    解:把抛物线的表达式化为顶点坐标式,y=-2(x+1)2+1.
    按照“左加右减,上加下减”的规律,向上平移3个单位,再向右平移4个单位,得
    y=-2(x+1-4)2+1+3=-2(x-3)2+4=-2x2+12x-2.
    故答案为:y=-2x2+12x-2.
    本题考查二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.同时考查了学生将一般式转化顶点式的能力.
    三、解答题(本大题共5个小题,共48分)
    14、原分式方程无解.
    【解析】
    根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.
    【详解】
    方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3
    即:x2+2x﹣x2﹣x+2=3
    整理,得x=1
    检验:当x=1时,(x﹣1)(x+2)=0,
    ∴原方程无解.
    本题考查解分式方程,解题的关键是明确解放式方程的计算方法.
    15、(1)见解析;(2)①;②当 时,四边形PBQD是菱形.
    【解析】
    (1)先证明△POD≌△QOB,从而得OP=OQ,再由OB=OD,根据对角线互相平分的四边形是平行四边形即可证得结论;
    (2)①根据PD=AD-AP即可得;
    ②由菱形的性质可得BP=PD=8-t,再由∠A=90°,根据勾股定理可得t2+62=(8-t)2,求出t值即可.
    【详解】
    (1)在矩形ABCD中,,

    ∵点O是BD的中点,

    在△POD和△QOB中,

    ∴△POD≌△QOB,
    ∴OP=OQ,
    又∵OB=OD,
    四边形PBQD是平行四边形;
    (2)①,
    ∴PD=8-AP=(8-t)cm;
    ②∵四边形PBQD是菱形,
    ∴BP=PD=8-t,
    ∵四边形ABCD是矩形,
    ∴∠A=90°,
    ∴AP2+AB2=BP2,
    即t2+62=(8-t)2,
    解得:t=,
    即当s时,四边形PBQD是菱形.
    本题考查了矩形的性质,全等三角形的判定与性质,平行四边形的判定,菱形的性质,勾股定理等知识,熟练掌握和灵活运用相关知识是解题的关键.
    16、详见解析
    【解析】
    根据题意写出已知、求证,假设∠B=∠C≥90°,计算得出∠A+∠B+∠C>180°,与三角形内角和定理矛盾,从而得出假设不成立即可.
    【详解】
    解:求证:等腰三角形的底角必为锐角.
    已知:如图所示,△ABC中,AB=AC.
    求证:∠B=∠C0°
    ∴∠A+∠B+∠C>180°
    与三角形内角和定理∠A+∠B+∠C=180°矛盾
    ∴假设不成立
    ∴等腰△ABC中∠B=∠C

    相关试卷

    2024-2025学年湖南省岳阳市汨罗市沙溪中学九年级数学第一学期开学质量检测模拟试题【含答案】:

    这是一份2024-2025学年湖南省岳阳市汨罗市沙溪中学九年级数学第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省汨罗市沙溪中学2023-2024学年九上数学期末学业质量监测试题含答案:

    这是一份湖南省汨罗市沙溪中学2023-2024学年九上数学期末学业质量监测试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2023-2024学年湖南省岳阳市汨罗市沙溪中学九年级数学第一学期期末预测试题含答案:

    这是一份2023-2024学年湖南省岳阳市汨罗市沙溪中学九年级数学第一学期期末预测试题含答案,共7页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map