搜索
    上传资料 赚现金
    英语朗读宝

    湖南省邵阳市北塔区2024年九年级数学第一学期开学教学质量检测试题【含答案】

    湖南省邵阳市北塔区2024年九年级数学第一学期开学教学质量检测试题【含答案】第1页
    湖南省邵阳市北塔区2024年九年级数学第一学期开学教学质量检测试题【含答案】第2页
    湖南省邵阳市北塔区2024年九年级数学第一学期开学教学质量检测试题【含答案】第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省邵阳市北塔区2024年九年级数学第一学期开学教学质量检测试题【含答案】

    展开

    这是一份湖南省邵阳市北塔区2024年九年级数学第一学期开学教学质量检测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,E是正方形ABCD的边BC的延长线上一点,若CE=CA,AE交CD于F,则∠FAC的度数是( )
    A.22.5°B.30°C.45°D.67.5°
    2、(4分)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=1,∠ABE=45°,则BC的长为( )
    A.B.1.5C.D.2
    3、(4分)若二次根式有意义,则x的取值范围是( )
    A.x<2B.x≠2C.x≤2D.x≥2
    4、(4分)关于二次函数y=﹣2x2+1,以下说法正确的是( )
    A.开口方向向上B.顶点坐标是(﹣2,1)
    C.当x<0时,y随x的增大而增大D.当x=0时,y有最大值﹣
    5、(4分)甲,乙,丙,丁四人进行射击测试,记录每人10次射击成情,得到各人的射击成绩方差如表中所示,则成绩最稳定的是( )
    A.甲B.乙C.丙D.丁
    6、(4分)下列事件是确定事件的是( )
    A.射击运动员只射击1次,就命中靶心
    B.打开电视,正在播放新闻
    C.任意一个三角形,它的内角和等于180°
    D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6
    7、(4分)三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,则这个三角形的周长是( ).
    A.8B.8或10C.10D.8和10
    8、(4分)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为﹣1.其中正确的有( )
    A.1个B.1个C.3个D.4个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.
    10、(4分)如图,矩形中,是上一点(不与重合),点在边上运动,分别是的中点,线段长度的最大值是__________.
    11、(4分)如图,△ABC,△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A在平面内自由旋转,连接DC,点M,P,N分别为DE,DC,BC的中点,若AD=3,AB=7,则线段MN的取值范围是______.
    12、(4分)不等式2x≥-4的解集是 .
    13、(4分)某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)化简分式:.
    15、(8分)如图,在中,,于点,,.点从点出发,在线段上以每秒的速度向点匀速运动;与此同时,垂直于的直线从底边出发,以每秒的速度沿方向匀速平移,分别交、、于点、、,当点到达点时,点与直线同时停止运动,设运动时间为秒().
    (1)当时,连接、,求证:四边形为菱形;
    (2)当时,求的面积;
    (3)是否存在某一时刻,使为以点或为直角顶点的直角三角形?若存在,请求出此时刻的值;若不存在,请说明理由.
    16、(8分)随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:
    (1)请你填写下表中甲班同学的相关数据.
    (2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?
    (3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).
    17、(10分)在平面直角坐标系中,已知点A、B的坐标分别为(-,0)、(0,-1),把点A绕坐标原点O顺时针旋转135°得点C,若点C在反比例函数y=的图象上.
    (1)求反比例函数的表达式;
    (2)若点D在y轴上,点E在反比例函数y=的图象上,且以点A、B、D、E为顶点的四边形是平行四边形.请画出满足题意的示意图并在示意图的下方直接写出相应的点D、E的坐标.
    18、(10分)(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;
    (2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP于点E,试判断四边形BPEP′的形状,并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某公司10月份生产了万件产品,要使12月份的产品产量达到万件,设平均每月增长的百分率是,则可列方程____.
    20、(4分)如图,把一张长方形的纸沿对角线BD折叠后,顶点A落在A′处,已知∠CDA′=28°,则∠CBD=______________.
    21、(4分)如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2, ……,按如图的方式放置.点A1,A2,A3,……和点C1,C2,C3……分别在直线y=x +1和x轴上,则点A6的坐标是____________.
    22、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2……按如图所示放置,点A1、A2、A3……在直线y=x+1上,点C1、C2、C3……在x轴上,则A2019的坐标是___.
    23、(4分)如图,直线y=x+1与坐标轴相交于A、B两点,在其图象上取一点A1,以O、A1为顶点作第一个等边三角形OA1B1,再在直线上取一点A2,以A2、B1为顶点作第二个等边三角形A2B1B2,…,一直这样作下去,则第10个等边三角形的边长为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
    (1)求证:四边形BEDF是平行四边形;
    (2)当四边形BEDF是菱形时,求EF的长.
    25、(10分)在▱ABCD中,对角线AC、BD相交于O,EF过点O,连接AF、CE.
    (1)求证:△BFO≌△DEO;
    (2)若AF⊥BC,试判断四边形AFCE的形状,并加以证明;
    (3)若在(2)的条件下再添加EF平分∠AEC,试判断四边形AFCE的形状,无需说明理由.
    26、(12分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行
    (1)若∠A=∠B,求证:AD=BC.
    (2)已知AD=BC,∠A=70°,求∠B的度数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    解:∵四边形ABCD是正方形,
    ∴∠ACB=45°,
    ∴∠E+∠∠FAC=∠ACB=45°,
    ∵CE=CA,
    ∴∠E=∠FAC,
    ∴∠FAC=∠ACB=22.5°.
    故选A.
    2、A
    【解析】
    由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC,求得AE=AB=1,然后依据勾股定理可求得BE的长.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AD∥BC.
    ∴∠DEC=∠BCE,
    ∵EC平分∠DEB,
    ∴∠DEC=∠BEC.
    ∴∠BEC=∠ECB.
    ∴BE=BC.
    ∵四边形ABCD是矩形,
    ∴∠A=90°,
    ∵∠ABE=45°,
    ∴∠ABE=AEB=45°,
    ∴AB=AE=1,
    ∵由勾股定理得:BE= ,
    ∴BC=BE=,
    故选:A.
    本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC是解题的关键.
    3、C
    【解析】
    二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.
    【详解】
    由题意得:1-x≥0,
    解得:x≤1.
    故选C.
    本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.
    4、C
    【解析】
    根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.
    【详解】
    解:∵二次函数y=﹣2x2+1,
    ∴该函数图象开口向下,故选项A错误;
    顶点坐标为(0,1),故选项B错误;
    当x<0时,y随x的增大而增大,故选项C正确;
    当x=0时,y有最大值1,故选项D错误;
    故选:C.
    本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
    5、D
    【解析】
    根据方差的性质即可判断.
    【详解】
    ∵丁的方差最小,故最稳定,
    选D.
    此题主要考查方差的应用,解题的关键是熟知方差的性质.
    6、C
    【解析】
    利用随机事件以及确定事件的定义分析得出答案.
    【详解】
    A.射击运动员只射击1次,就命中靶心,是随机事件. 故选项错误;
    B.打开电视,正在播放新闻,是随机事件.故选项错误;
    C.任意一个三角形,它的内角和等于180°,是必然事件.故选项正确;
    D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件.故选项错误.
    故选C.
    本题考查了随机事件和确定事件,正确把握相关事件的确定方法是解题的关键.
    7、C
    【解析】
    解:∵

    或,
    三角形的第三边为4或2,
    ∵2+2=4不符合题意, ,
    三角形的第三边为4,
    这个三角形的周长为
    故选C
    此题做出来以后还要进行检验,三角形的三边关系满足,所以不符合此条件,应该舍去
    8、C
    【解析】
    连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的性质即可得到PE=PC;故②正确;连接EF,推出点E,P,F,C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,故③正确;取AE 的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO=AE,推出点P在以O为圆心,AE为直径的圆上,当O、C、P共线时,CP的值最小,根据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.
    【详解】
    连接AE,过E作EH⊥AB于H,
    则EH=BC,
    ∵AB=BC,
    ∴EH=AB,
    ∵EG⊥AF,
    ∴∠BAF+∠AGP=∠BAF+∠AFB=90°,
    ∴∠EGH=∠AFB,
    ∵∠B=∠EHG=90°,
    ∴△HEG≌△ABF(AAS),
    ∴AF=EG,故①正确;
    ∵AB∥CD,
    ∴∠AGE=∠CEG,
    ∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,
    ∵∠BAF=∠PCF,
    ∴∠AGE=∠PCE,
    ∴∠PEC=∠PCE,
    ∴PE=PC;故②正确;
    连接EF,
    ∵∠EPF=∠FCE=90°,
    ∴点E,P,F,C四点共圆,
    ∴∠FEC=∠FPC=45°,
    ∴EC=FC,
    ∴BF=DE=1,
    故③正确;
    取AE 的中点O,连接PO,CO,
    ∴AO=PO=AE,
    ∵∠APE=90°,
    ∴点P在以O为圆心,AE为直径的圆上,
    ∴当O、C、P共线时,CP的值最小,
    ∵PC≥OC﹣OP,
    ∴PC的最小值=OC﹣OP=OC﹣AE,
    ∵OC==,AE==,
    ∴PC的最小值为﹣,故④错误,
    故选:C.
    此题考查了正方形的性质、全等三角形的判定和性质、直角三角形的性质、圆的综合等知识,借助圆的性质解决线段的最小值是解答的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    平移的距离为线段BE的长求出BE即可解决问题;
    【详解】
    ∵BC=EF=5,EC=3,
    ∴BE=1,
    ∴平移距离是1,
    故答案为:1.
    本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
    10、5
    【解析】
    根据矩形的性质求出AC,然后求出AP的取值范围,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP.
    【详解】
    解:∵矩形ABCD中,AB=6,BC=8 ,
    ∴对角线AC=10,
    ∵P是CD边上的一动点,
    ∴8≤AP≤10,
    连接AP,
    ∵M,N分别是AE、PE的中点,
    ∴MN是△AEP的中位线,
    ∴, MN=AP.
    ∴MN最大长度为5.
    本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP的取值范围是解题的关键.
    11、2≤MN≤5
    【解析】
    根据中位线定理和等腰直角三角形的判定证明△PMN是等腰直角三角形,求出MN=BD,然后根据点D在AB上时,BD最小和点D在BA延长线上时,BD最大进行分析解答即可.
    【详解】
    ∵点P,M分别是CD,DE的中点,
    ∴PM=CE,PM∥CE,
    ∵点P,N分别是DC,BC的中点,
    ∴PN=BD,PN∥BD,
    ∵△ABC,△ADE均为等腰直角三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
    ∴∠BAD=∠CAE,
    ∴△ABD≌△ACE(SAS),
    ∴BD=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形,
    ∵PM∥CE,
    ∴∠DPM=∠DCE,
    ∵PN∥BD,
    ∴∠PNC=∠DBC,
    ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
    ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
    ∵∠BAC=90°,
    ∴∠ACB+∠ABC=90°,
    ∴∠MPN=90°,
    ∴△PMN是等腰直角三角形,
    ∴PM=PN=BD,
    ∴MN=BD,
    ∴点D在AB上时,BD最小,
    ∴BD=AB-AD=4,MN的最小值2;
    点D在BA延长线上时,BD最大,
    ∴BD=AB+AD=10,MN的最大值为5,
    ∴线段MN的取值范围是2≤MN≤5.
    故答案为:2≤MN≤5.
    此题考查了旋转的性质,三角形中位线定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等,关键是根据全等三角形的判定和等腰直角三角形的判定证明△PMN是等腰三角形.
    12、x≥-1
    【解析】
    分析:已知不等式左右两边同时除以1后,即可求出解集.
    解答:
    解:1x≥-4,
    两边同时除以1得:x≥-1.
    故答案为x≥-1.
    13、90
    【解析】
    试题分析:设物理得x分,则95×60%+40%x=93,截得:x=90.
    考点:加权平均数的运用
    三、解答题(本大题共5个小题,共48分)
    14、.
    【解析】
    根据分式的混合运算法则进行运算,最后化成最简分式即可.
    【详解】

    =,
    =
    =.
    此题主要考查了分式的加减运算,分工的化简等知识点的理解和掌握,能熟练地进行有关分式的运算是解此题的关键.
    15、(1)见解析;(2);(3)存在以点为直角顶点的直角三角形.此时,.
    【解析】
    (1)根据菱形的判定定理即可求解;
    (2)由(1)知,故,故 ,可求得,
    , 再根据三角形的面积公式即可求解;
    (3)根据题意分①若点为直角顶点, ②若点为直角顶点, 根据相似三角形的性质即可求解.
    【详解】
    (1)证明:如图1,当时,,
    则为的中点,又∵,
    ∴为的垂直平分线,∴,.
    ∵,∴.
    ∵,∴,,
    ∴,∴,
    ∴,即四边形为菱形.
    (2)如图2,由(1)知,
    ∴,
    ∴,即,解得:,


    (3)①若点为直角顶点,如图3①,
    此时,,.
    ∵,∴,
    即:,此比例式不成立,故不存在以点为直角顶点的直角三角形;
    ②若点为直角顶点,如图3②,
    此时,,,.
    ∵,∴,即:,
    解得.故存在以点为直角顶点的直角三角形.此时,.
    【点睛】此题主要考查三角形的动点问题,解题的关键是熟知相似三角形的判定与性质.
    16、(1)填写表格见解析;(2)乙组成绩更好一些;(3)①从众数看,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班成绩优于甲班.(至少从两个角度进行评价).
    【解析】
    (1)根据众数、中位数、平均数以及方差的计算公式分别进行解答即可;
    (2)根据表中给出的数据,得出甲组优秀的人数有3人,乙组优秀的人数有4人,从而得出乙组成绩更好一些;
    (3)从中位数看,甲组每分钟输入135字以上的人数比乙组多;从方差看,S2甲<S2乙;甲组成绩波动小,比较稳定.
    【详解】
    解:(1)如下表:
    (2)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人
    ∴乙组成绩更好一些
    (3)①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,甲班众数成绩优于乙班;
    ②从中位数看,甲班每分钟输入135字以上的人数比乙班多;
    ③从平均数看,两班同学输入的总字数一样,成绩相当;
    ④从方差看,甲的方差小于乙的方差,则甲班成绩波动小,比较稳定;
    ⑤从最好成绩看,乙班速度最快的选手比甲班多1人,若比较前3~4名选手的成绩,则乙班成绩优于甲班.(至少从两个角度进行评价).
    此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.
    17、(1)y=;(2)示意图见解析,E(-,-),D(0,-1-)或E(-,-),D(0,-1+)或E , D
    【解析】
    (1)根据旋转和直角三角形的边角关系可以求出点C的坐标,进而确定反比例函数的关系式;
    (2)分两种情况进行讨论解答,①点E在第三象限,由题意可得E的横坐标与点A的相同,将A的横坐标代入反比例函数的关系式,可求出纵坐标,得到E的坐标,进而得到AE的长,也是BD的长,因此D在B的上方和下方,即可求出点D的坐标,②点E在第一象限,由三角形全等,得到E的横坐标,代入求出纵坐标,确定E的坐标,进而求出点D的坐标.
    【详解】
    (1)由旋转得:OC=OA=,∠AOC=135°,
    过点C作CM⊥y轴,垂足为M,则∠COM=135°-90°=45°,
    在Rt△OMC中,∠COM=45°,OC=,
    ∴OM=CM=1,
    ∴点C(1,1),代入y=得:k=1,
    ∴反比例函数的关系式为:y=,
    答:反比例函数的关系式为:y=
    (2)①当点E在第三象限反比例函数的图象上,如图1,图2,

    ∵点D在y轴上,AEDB是平行四边形,
    ∴AE∥DB,AE=BD,AE⊥OA,
    当x=-时,y==-,
    ∴E(-,-)
    ∵B(0,-1),BD=AE=,
    当点D在B的下方时,
    ∴D(0,-1-)
    当点D在B的上方时,
    ∴D(0,-1+),
    ②当点E在第一象限反比例函数的图象上时,如图3,
    过点E作EN⊥y轴,垂足为N,
    ∵ABED是平行四边形,
    ∴AB=DE,AB=DE,
    ∴∠ABO=∠EDO,
    ∴△AOB≌△END (AAS),
    ∴EN=OA=,DN=OB=1,
    当x=时,代入y=得:y=,
    ∴E(,),
    ∴ON=,OD=ON+DN=1+,
    ∴D(0,1+)
    考查反比例函数图象上点的坐标特征、平行四边形的性质、以及全等三角形的判定和性质等知识,画出不同情况下的图形是解决问题的关键.
    18、(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.
    【解析】
    (1)易证△ABM≌△BCN,再根据角度的关系得到∠APB=90°,即可得到AM⊥BN;
    (2)根据旋转的性质及(1)得到四边形BPEP′是矩形,再根据BP= BP′,得到四边形BPEP′是正方形.
    【详解】
    (1)AM⊥BN
    证明:∵四边形ABCD是正方形,
    ∴AB=BC,∠ABM=∠BCN=90°
    ∵BM=CN,
    ∴△ABM≌△BCN
    ∴∠BAM=∠CBN
    ∵∠CBN+∠ABN=90°,
    ∴∠ABN+∠BAM=90°,
    ∴∠APB=90°
    ∴AM⊥BN.
    (2)四边形BPEP′是正方形.
    △A′P′B是△APB绕着点B逆时针旋转90º所得,
    ∴BP= BP′,∠P′BP=90º.
    又由(1)结论可知∠APB=∠A′P′B=90°,
    ∴∠BP′E=90°.
    所以四边形BPEP′是矩形.
    又因为BP= BP′,所以四边形BPEP′是正方形.
    此题主要考查特殊平行四边形的性质与判定,解题的关键是熟知正方形的性质与判定.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、100(1+x)2=121
    【解析】
    设平均每月增长的百分率是x,那么11月份的产品产量为100(1+x)万件,2月份的产品产量为100(1+x)(1+x),然后根据2月份的产品产量达到121万件即可列出方程,解方程即可.
    【详解】
    解:设平均每月增长的百分率是x,依题意得:
    100(1+x)2=121
    故答案为100(1+x)2=121
    本题考查了利用一元二次方程解增长率问题.
    20、31°
    【解析】
    根据折叠的性质可得:∠BDA=∠BDA'=(90°-28°),则利用平行线的性质可求∠CBD=∠BDA.
    【详解】
    解:由折叠性质可知:
    ∠BDA=∠BDA'=(90°-28°)=31°
    又∵矩形ABCD中,AD∥BC
    ∴∠CBD=∠BDA=31°
    故答案为:31°.
    本题考查了折叠及矩形的性质,理解折叠中出现的相等的角是关键.
    21、(31,32)
    【解析】
    分析:
    由题意结合图形可知,从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,由此可得点An的纵坐标是,根据点An在直线y=x+1上可得点An的横坐标为,由此即可求得A6的坐标了.
    详解:
    由题意结合图形可知:从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,
    ∵点An的纵坐标是第n个正方形的边长,
    ∴点An的纵坐标为,
    又∵点An在直线y=x+1上,
    ∴点An的横坐标为,
    ∴点A6的横坐标为:,点A6的纵坐标为:,
    即点A6的坐标为(31,32).
    故答案为:(31,32).
    点睛:读懂题意,“弄清第n个正方形的边长是,点An的纵坐标与第n个正方形边长间的关系”是解答本题的关键.
    22、(22008-1,22008)
    【解析】
    先求出A1、A2、A3的坐标,找出规律,即可求解.
    【详解】
    ∵直线y=x+1和y轴交于A1,
    ∴A1的交点为(0,1)
    ∵四边形A1B1C1O是正方形,
    ∴OC1=OA1=1,
    把x=1代入直线得y=2,
    ∴A2(1,2)
    同理A3(3,4)

    ∴An的坐标为(2n-1-1,2n-1)
    故A2019的坐标为(22008-1,22008)
    此题主要考查一次函数的图像,解题的关键是根据题意找到规律进行求解.
    23、
    【解析】
    作A1D⊥x轴于D,A2E⊥x轴于E,根据等边三角形的性质得OD=B1D,B1E=B2E,∠OA1D=30°,∠B1A2E=30°,设OD=t,B1E=a,则A1D=t,A2E=a,则A1点坐标为(t, t),把A1的坐标代入y=x+1,可解得t=,于是得到B1点的坐标为(,0),OB1=,则A2点坐标为(+a, a),然后把A2的坐标代入y=x+1可解得a=,B1B2=2,同理得到B2B3=4,…,按照此规律得到B9B10=29•.
    【详解】
    解:作A1D⊥x轴于D,A2E⊥x轴于E,如图,
    ∵△OA1B1、△B1A2B2均为等边三角形,
    ∴OD=B1D,B1E=B2E,∠OA1D=30°,∠B1A2E=30°,
    设OD=t,B1E=a,则A1D=t,A2E=a,
    ∴A1点坐标为(t, t),
    把A1(t, t)代入y=x+1,得t=t+1,解得t=,
    ∴OB1=,
    ∴A2点坐标为(+a, a),
    把A2(+a, a)代入y=x+1,得a=(+a)+1,解得a=,
    ∴B1B2=2,
    同理得到B2B3=22•,
    …,
    按照此规律得到B9B10=29•.
    故选答案为29•.
    本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等边三角形的性质.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2).
    【解析】
    (1)根据矩形ABCD的性质,判定△BOE≌△DOF(ASA),进而得出结论;
    (2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.
    【详解】
    (1)证明:∵四边形ABCD是矩形,O是BD的中点,
    ∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
    ∴∠OBE=∠ODF,
    在△BOE和△DOF中,
    ∴△BOE≌△DOF(ASA),
    ∴EO=FO,
    ∴四边形BEDF是平行四边形;
    (2)当四边形BEDF是菱形时,BD⊥EF,
    设BE=x,则 DE=x,AE=6-x,
    在Rt△ADE中,DE2=AD2+AE2,
    ∴x2=42+(6-x)2,
    解得:x= ,
    ∵BD= =2,
    ∴OB=BD=,
    ∵BD⊥EF,
    ∴EO==,
    ∴EF=2EO=.
    本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键
    25、(1)详见解析;
    (2)四边形AFCE是矩形,证明见解析;
    (3)四边形AFCE是正方形.
    【解析】
    (1)由平行四边形的性质得出OB=OD,OA=OC,AD∥BC,得出∠OBF=∠ODE,由ASA证明△BFO≌△DEO即可;
    (2)由全等三角形的性质得出BF=DE,证出四边形AFCE是平行四边形,再证出∠AFC=90°,即可得出四边形AFCE是矩形.
    (3)由EF平分∠AEC知∠AEF=∠CEF,再由AD∥BC知∠AEF=∠CFE,从而得∠CEF=∠CFE,继而知CE=CF,据此可得答案.
    【详解】
    解:(1)∵四边形ABCD是平行四边形,
    ∴OB=OD,AD∥BC,AD=BC,
    ∴∠OBF=∠ODE,
    在△BFO和△DEO中,
    ∵ ,
    ∴△BFO≌△DEO(ASA);
    (2)四边形AFCE是矩形;理由如下:
    ∵△BFO≌△DEO,
    ∴BF=DE,
    ∴CF=AE,
    ∵AD∥BC,
    ∴四边形AFCE是平行四边形;
    又∵AF⊥BC,
    ∴∠AFC=90°,
    ∴四边形AFCE是矩形;
    (3)∵EF平分∠AEC,
    ∴∠AEF=∠CEF,
    ∵AD∥BC,
    ∴∠AEF=∠CFE,
    ∴∠CEF=∠CFE,
    ∴CE=CF,
    ∴四边形AFCE是正方形.
    本题考查了四边形的综合问题,主要考查平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.
    26、 (1)证明见解析;(2)∠B=70°.
    【解析】
    (1)过C作CE∥AD于点E,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,根据AD∥CE,可得∠A=∠CEB,根据等量代换可得∠CEB=∠B,进而得到CE=BC,从而可得AD=BC;
    (2)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,再由条件AD=BC可得CE=BC,根据等边对等角可得∠B=∠CEB,再根据平行线的性质可得∠A=∠CEB,利用等量代换可得∠B=∠A.
    【详解】
    (1) 证明:过C作CE∥AD于点E,
    ∵AB∥DC,CE∥AD
    ∴四边形ADCE是平行四边形,
    ∴AD=CE,
    ∵AD∥CE,
    ∴∠A=∠CEB,
    ∵∠A=∠B,
    ∴∠CEB=∠B,
    ∴CE=CB,
    ∴AD=CB;
    (2)过C作CE∥AD于点E,
    ∵AB∥DC,CE∥AD
    ∴四边形ADCE是平行四边形,
    ∴AD=CE,
    ∵AD=BC,
    ∴CE=CB,
    ∴∠B=∠CEB,
    ∵AD∥CE,
    ∴∠A=∠CEB,
    ∴∠B=∠A=70°.
    本题主要考查平行四边形的判定及性质,等腰三角形的性质,掌握平行四边形的性质是解题的关键.
    题号





    总分
    得分
    批阅人
    统计量




    方差
    0.60
    0.62
    0.50
    0.44
    输入汉字(个)
    132
    133
    134
    135
    136
    137
    甲组人数(人)
    1
    0
    1
    5
    2
    1
    乙组人数(人)
    0
    1
    4
    1
    2
    2

    众数
    中位数
    平均数()
    方差()
    甲组
    乙组
    134
    134.5
    135
    1.8

    众数
    中位数
    平均数()
    方差()
    甲组
    135
    135
    135
    1.6
    乙组
    134
    134.5
    135
    1.8

    相关试卷

    2025届湖南邵阳市区九年级数学第一学期开学教学质量检测试题【含答案】:

    这是一份2025届湖南邵阳市区九年级数学第一学期开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖南省邵阳市数学九年级第一学期开学教学质量检测试题【含答案】:

    这是一份2024年湖南省邵阳市数学九年级第一学期开学教学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省邵阳市北塔区2023-2024学年九上数学期末监测试题含答案:

    这是一份湖南省邵阳市北塔区2023-2024学年九上数学期末监测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知,满足,则的值是,下列事件中,必然事件是,下列方程中,没有实数根的方程是,如图,中,等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map