开学活动
搜索
    上传资料 赚现金

    湖南省武冈市第一中学2024年数学九年级第一学期开学联考模拟试题【含答案】

    湖南省武冈市第一中学2024年数学九年级第一学期开学联考模拟试题【含答案】第1页
    湖南省武冈市第一中学2024年数学九年级第一学期开学联考模拟试题【含答案】第2页
    湖南省武冈市第一中学2024年数学九年级第一学期开学联考模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省武冈市第一中学2024年数学九年级第一学期开学联考模拟试题【含答案】

    展开

    这是一份湖南省武冈市第一中学2024年数学九年级第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)无理数在两个整数之间,下列结论正确的是( )
    A.2~3之间B.3~4之间C.4~5之间D.5~6之间
    2、(4分)多项式的一个因式为( )
    A.B.C.D.
    3、(4分)▱ABCD中,对角线AC与BD相交于点E,将△ABC沿AC所在直线翻折至△AB′C,若点B的落点记为B′,连接B′D、B′C,其中B′C与AD相交于点G.
    ①△AGC是等腰三角形;②△B′ED是等腰三角形;
    ③△B′GD是等腰三角形;④AC∥B′D;
    ⑤若∠AEB=45°,BD=2,则DB′的长为;
    其中正确的有( )个.
    A.2B.3C.4D.5
    4、(4分)已知a<b,则下列不等式正确的是( )
    A.a﹣3<b﹣3B.>C.﹣a<﹣bD.6a>6b
    5、(4分)某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( )
    A.8B.7C.9D.10
    6、(4分)某地开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么所列方程正确的是( )
    A.B.
    C.D.
    7、(4分)如图,在中,,,,点在上,若四边形DEBC为菱形,则的长度为( )
    A.7B.9C.3D.4
    8、(4分)分式方程的解为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)不等式4﹣3x>2x﹣6的非负整数解是_____.
    10、(4分)顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.
    11、(4分)在正方形ABCD中,对角线AC、BD相交于点O.如果AC =,那么正方形ABCD的面积是__________.
    12、(4分)将直线y=2x向下平移2个单位,所得直线的函数表达式是_____.
    13、(4分)如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示
    该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
    (1)该商场计划购进A,B两种品牌的教学设备各多少套?
    (2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?
    15、(8分)如图,四边形 ABCD 是正方形,点 E是 BC边上任意一点, AEF 90°,且EF 交正方形外角的平分线 CF 于点 F.求证:AE=EF.
    16、(8分)计算
    (1)()-()
    (2)(2+3)(2-3)
    17、(10分)已知函数的图象经过第四象限的点B(3,a),且与x轴相交于原点和点A(7,0)
    (1)求k、b的值;
    (2)当x为何值时,y>﹣2;
    (3)点C是坐标轴上的点,如果△ABC恰好是以AB为腰的等腰三角形,直接写出满足条件的点C的坐标
    18、(10分)如图,平行四边形ABCD,以点B为圆心,BA长为半径作圆弧,交对角线BD于点E,连结AE并延长交CD于点F,求证:DF=DE.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为__________.
    20、(4分)因式分解:m2n+2mn2+n3=_____.
    21、(4分)化简的结果为______.
    22、(4分)如图,在直角坐标系中,有菱形OABC,A点的坐标是(5,0),双曲线经过点C,且OB•AC=40,则k的值为_________ .
    23、(4分)一个班有48名学生,在期末体育考核中,优秀的人数有16人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是__________度.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60 km/h(即),并在离该公路100 m处设置了一个监测点A.在如图的平面直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.另外一条公路在y轴上,AO为其中的一段.
    (1)求点B和点C的坐标;
    (2)一辆汽车从点B匀速行驶到点C所用的时间是15 s,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:≈1.7)
    25、(10分)如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.
    (1)求点B的坐标;
    (2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;
    (3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.
    26、(12分)如图,已知,点在上,点在上.
    (1)请用尺规作图作出的垂直平分线,交于点,交于点;(保留作图痕迹,不写作法);
    (2)连结,求证四边形是菱形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    先看13位于哪两个相邻的整数的平方之间,再将不等式的两边同时开方即可得出答案.
    【详解】

    ∴,
    故选B.
    本题考查估算无理数的大小,平方根,本题的解题关键是掌握“夹逼法”估算无理数大小的方法.
    2、C
    【解析】
    直接提取公因式进而合并同类项得出即可.
    【详解】

    则一个因式为:.
    故选C.
    此题主要考查了提取公因式法分解因式,正确合并同类项是解题关键.
    3、D
    【解析】
    利用平行四边形的性质、翻折不变性一一判断即可解决问题;
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴BE=DE,AD∥BC,AD=BC,
    ∴∠GAC=∠ACB,
    由翻折可知:BE=EB′=DE,∠ACB=∠ACG,CB=CB′,
    ∴∠GAC=∠ACG,
    ∴△AGC,△B′ED是等腰三角形,故①②正确,
    ∵AB′=AB=DC,CB′=AD,DB′=B′D,
    ∴△ADB′≌△CB′D,
    ∴∠ADB′=∠CB′D,
    ∴GD=GB′,
    ∴△B′GD是等腰三角形,故③正确,
    ∵∠GAC=∠GCA,∠AGC=∠DGB′,
    ∴∠GAC=∠GDB′,
    ∴AC∥DB′,故④正确.
    ∵∠AEB=45°,BD=2,
    ∴∠BEB′=∠DEB′=90°,
    ∵DE=EB′=1,
    ∴DB′=,故⑤正确.
    故选:D.
    本题考查翻折变换、等腰三角形的性质、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    4、A
    【解析】
    利用不等式的性质判断即可.
    【详解】
    解:A、在不等式a<b的两边同时减去3,不等式仍成立,即a﹣3<b﹣3,原变形正确,故本选项符合题意.
    B、在不等式a<b的两边同时除以2,不等式仍成立,即<,原变形错误,故本选项不符合题意.
    C、在不等式a<b的两边同时乘以﹣1,不等号方向改变,即﹣a>﹣b,原变形错误,故本选项不符合题意.
    D、在不等式a<b的两边同时乘以6,不等式仍成立,即6a<6b,原变形错误,故本选项不符合题意.
    故选:A.
    此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.
    5、C
    【解析】
    试题分析:根据中位数的概念求解.∵共有10名同学,∴第5名和第6名同学的读书时间的平均数为中位数,则中位数为:=1.
    故选C.
    考点:中位数.
    6、C
    【解析】
    本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
    【详解】
    解:设原计划每天挖x米,则原计划用时为:天,
    实际用时为:天,
    ∴,
    故选:C.
    本题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    7、A
    【解析】
    根据勾股定理得到AC==25, 连接BD交AC于O,由菱形的性质得到BD⊥CE,BO=DO,EO=CO,求得CE=2OE=18,于是得到结论.
    【详解】
    解:连接BD,交AC于点O,
    在△ABC中,∠ABC=90°,AB=20,BC=15,
    ∴AC==25,
    连接BD交AC于O,
    ∵四边形BCDE为菱形,
    ∴BD⊥CE,BO=DO,EO=CO,
    ∴BO===12,
    ∴OC==9,
    ∴CE=2OE=18,
    ∴AE=7,
    故选:A.
    本题考查菱形的性质,三角形的面积公式,勾股定理,正确的识别图形是解题的关键.
    8、C
    【解析】
    观察可得最简公分母是x(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
    【详解】
    方程的两边同乘x(x-1),得
    1x-1=4x,
    解得x=-1.
    检验:当x=-1时,x(x-1)≠2.
    ∴原方程的解为:x=-1.
    故选C.
    本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、0,2
    【解析】
    求出不等式2x+2>3x﹣2的解集,再求其非负整数解.
    【详解】
    解:移项得,﹣2x﹣3x>﹣6﹣4,
    合并同类项得,﹣5x>﹣20,
    系数化为2得,x<2.
    故其非负整数解为:0,2.
    本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.
    10、菱形
    【解析】
    【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.
    【详解】如图
    连接BD,AC
    由矩形性质可得AC=BD,
    因为,E,F,G,H是各边的中点,
    所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC
    所以,EG=EF=EF=FG,
    所以,所得四边形EFGH是菱形.
    故答案为:菱形
    【点睛】本题考核知识点:矩形性质,菱形判定. 解题关键点: 由三角形中位线性质证边相等.
    11、1
    【解析】
    根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.
    【详解】
    正方形ABCD的一条对角线将正方形分为两个全等的等腰直角三角形,即AC是等腰直角三角形的斜边,
    ∵AC=
    ∴正方形ABCD的面积两个直角三角形的面积和,
    ∴正方形ABCD的面积=,
    故答案为:1.
    此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.
    12、y=1x﹣1.
    【解析】
    解:根据一次函数的平移,上加下减,可知一次函数的表达式为y=1x-1.
    13、(a+3,b+2)
    【解析】
    找到一对对应点的平移规律,让点P的坐标也作相应变化即可.
    【详解】
    点B的坐标为(-2,0),点B′的坐标为(1,2);
    横坐标增加了1-(-2)=3;纵坐标增加了2-0=2;
    ∵△ABC上点P的坐标为(a,b),
    ∴点P的横坐标为a+3,纵坐标为b+2,
    ∴点P变换后的对应点P′的坐标为(a+3,b+2).
    解决本题的关键是根据已知对应点找到各对应点之间的变化规律.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) A,B两种品牌的教学设备分别为20套,30套; (2) 至多减少1套.
    【解析】
    (1)设A品牌的教学设备x套,B品牌的教学设备y套,根据题意可得方程组,解方程组即可求得商场计划购进A,B两种品牌的教学设备的套数;
    (2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意得不等式1.5(20-a)+1.2(30+1.5a)≤69,解不等式即可求得答案.
    【详解】
    (1)设A品牌的教学设备x套,B品牌的教学设备y套,由题意,得

    解得:.
    答:该商场计划购进A品牌的教学设备20套,B品牌的教学设备30套;
    (2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意,得
    1.5(20-a)+1.2(30+1.5a)≤69,
    解得:a≤1.
    答:A种设备购进数量至多减少1套.
    15、见解析
    【解析】
    截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.
    【详解】
    证明:在AB上截取BM=BE,连接ME,
    ∵∠B=90°,
    ∴∠BME=∠BEM=45°,
    ∴∠AME=135°
    ∵CF是正方形ABCD的外角的角平分线,
    ∴∠ECF=90°+∠DCF=90°+=135°=∠ECF,
    ∵AEF 90°
    ∴∠AEB+=90°
    又∠AEB+=90°,

    ∵AB=BC,BM=BE,
    ∴AM=EC,
    在△AME和△ECF中

    ∴△AME≌△ECF(ASA),
    ∴AE=EF.
    本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.
    16、 (1) ;(2)-1.
    【解析】
    (1)先把二次根式化为最简二次根式,然后合并即可;
    (2)利用平方差公式计算.
    【详解】
    (1)原式=
    =;
    (2)原式=8-9=-1.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    17、(1);(2)x<2或x>时,有y>﹣2;(3)点C的坐标为(2,0)或(12,0)或(-1,0)或(0,1)或(0,-7).
    【解析】
    (1)利用待定系数法可得k和b的值;
    (2)将y=-2代入函数中,分别计算x的值,根据图象可得结论;
    (3)分两种情况画图,以∠BAC和∠ABC为顶角,根据AB=5和对称的性质可得点C的坐标.
    【详解】
    (1)当x=3时,a=-3,
    ∴B(3,-3),
    把B(3,-3)和点A(7,0)代入y=kx+b中,
    得:,解得:;
    (2)当y=-2时,-x=-2,x=2,

    解得,,
    如图1,由图象得:当x<2或x>时,y>-2;
    (3)∵B(3,-3)和点A(7,0),
    ∴AB==5,
    ①以∠BAC为顶角,AB为腰时,如图2,AC=AB=5,
    ∴C(2,0)或(12,0);
    ②以∠ABC为顶角,AB为腰时,如图3,以B为圆心,以AB为腰画圆,当△ABC是等腰三角形时,此时存在三个点C,
    得C3(-1,0),
    由C3与C4关于直线 y=-x对称得:C4(0,1)
    由C5与点A关于直线y=-x对称得:C5(0,-7)
    综上,点C的坐标为(2,0)或(12,0)或(-1,0)或(0,1)或(0,-7).
    本题是分段函数与三角形的综合问题,考查了待定系数法求函数解析式以及等腰三角形的判定,同时还要注意运用数形结合与分类讨论的思想解决问题.
    18、见解析.
    【解析】
    欲证明DE=DF,只要证明∠DEF=∠DFE.
    【详解】
    证明:由作图可知:BA=BE,
    ∴∠BAE=∠BEA,
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠BAE=∠DFE,
    ∵∠AEB=∠DEF,
    ∴∠DEF=∠DFE,
    ∴DE=DF.
    本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求众数即可.3,a,2b,5与a,1,b的平均数都是1.
    【详解】
    解:∵两组数据:3,a,2b,5与a,1,b的平均数都是1,
    ∴,解得,
    若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,1,8,8,8,
    一共7个数,中间的数是1,所以中位数是1.
    故答案为1.
    20、n(m+n)1
    【解析】
    先提公因式n,再利用完全平方公式分解因式即可.
    【详解】
    解:m1n+1mn1+n3
    =n(m1+1mn+n1)
    =n(m+n)1.
    故答案为:n(m+n)1
    此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.
    21、
    【解析】
    根据二次根式的性质进行化简.由即可得出答案.
    【详解】
    解:,
    故答案为:.
    本题考查的是二次根式的化简,掌握二次根式的性质: 是解题的关键.
    22、12
    【解析】
    过点C作于D,根据A点坐标求出菱形的边长,再根据菱形的面积求得CD,然后利用勾股定理求得OD,从而得到C点坐标,代入函数解析式中求解.
    【详解】
    如图,过点C作于D,
    ∵点A的坐标为(5,0),
    ∴菱形的边长为OA=5,,,
    ∴ ,解得,
    在中,根据勾股定理可得: ,
    ∴点C的坐标为(3,4),
    ∵双曲线经过点C,
    ∴ ,
    故答案为:12.
    本题考查了菱形与反比例函数的综合运用,解题的关键在于合理作出辅助线,求得C点的坐标.
    23、1
    【解析】
    先求出体育优秀的占总体的百分比,再乘以360°即可.
    【详解】
    解:圆心角的度数是:
    故答案为:1.
    本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
    二、解答题(本大题共3个小题,共30分)
    24、见解析
    【解析】
    试题分析:根据方位角的概念,得出∠BAO=60°,∠CAO=45°,由∠BAO=60°可得∠ABO=30°,进而可得AB的值,然后在Rt△ABO中由勾股定理可求出OB的值,(2)判断是否超速就是求BC的长,然后比较即可.
    解:(1)在Rt△AOB中,
    ∵∠BAO=60°,∴∠ABO=30°,∴OA=AB.
    ∵OA=100 m,∴AB=200 m.
    由勾股定理,得OB==100(m).
    在Rt△AOC中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.
    ∴OC=OA=100 m.∴B(-100,0),C(100,0).
    (2)∵BC=BO+CO=(100+100)m,≈18>,
    ∴这辆汽车超速了.
    25、 (1) B(0,6);(2) d=﹣t+10;(3)见解析.
    【解析】
    【分析】(1)把A(8,0)代入y=﹣x+b,可求解析式,再求B的坐标;(2)先求点C(0,﹣4),再求直线AC解析式,可设点P(t,﹣t+6),Q(t, t﹣4),所以d=(﹣t+6)﹣(t﹣4);过点M作MG⊥PQ于G,证△OAC≌△GMQ,得QG=OC=4,GM=OA=8;过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,得四边形GHRM是矩形,得HR=GM=8;设GH=RM=k,由△HNQ≌△RMN,得HN=RM=k,NR=QH=4+k,由HR=HN+NR,得k+4+k=8,可得GH=NH=RM=2,HQ=6,由Q(t,t﹣4),得N(t+2,t﹣4+6),代入y=﹣x+6,得t+2=﹣(t+2)+6,求出t=2,再求P(2,),N(4,3),可得PH=,NH=2,最后PN=.
    【详解】解:(1)∵y=﹣x+b交x轴于点A(8,0),
    ∴0=﹣×8+b,b=6,
    ∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);
    (2)∵A(8,0),B(0,6),
    ∴OA=8,OB=6,
    ∵∠AOB=90°,
    ∴AB=10=BC,
    ∴OC=4,
    ∴点C(0,﹣4),设直线AC解析式为y=kx+b’,
    ∴,
    ∴,
    ∴直线AC解析式为y=x﹣4,
    ∵P在直线y=﹣x+6上,
    ∴可设点P(t,﹣t+6),
    ∵PQ∥y轴,且点Q在y=x﹣4 上,
    ∴Q(t, t﹣4),
    ∴d=(﹣t+6)﹣(t﹣4)=﹣t+10;
    (3)过点M作MG⊥PQ于G,
    ∴∠QGM=90°=∠COA,
    ∵PQ∥y轴,
    ∴∠OCA=∠GQM,
    ∵CQ=AM,
    ∴AC=QM,在△OAC与△GMQ中,

    ∴△OAC≌△GMQ,
    ∴QG=OC=4,GM=OA=8,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,
    ∴∠MGH=∠RHG=∠MRH=90°,
    ∴四边形GHRM是矩形,
    ∴HR=GM=8,可设GH=RM=k,
    ∵△MNQ是等腰直角三角形,
    ∴∠QMN=90°,NQ=NM,
    ∴∠HNQ+∠HQN=90°,
    ∴∠HNQ+∠RNM=90°,
    ∴∠RNM=∠HQN,
    ∴△HNQ≌△RMN,
    ∴HN=RM=k,NR=QH=4+k,
    ∵HR=HN+NR,
    ∴k+4+k=8,
    ∴k=2,
    ∴GH=NH=RM=2,
    ∴HQ=6,
    ∵Q(t,t﹣4),
    ∴N(t+2,t﹣4+6)即 N(t+2,t+2)
    ∵N在直线AB:y=﹣x+6上,
    ∴t+2=﹣(t+2)+6,
    ∴t=2,
    ∴P(2,),N(4,3),
    ∴PH=,NH=2,
    ∴PN=
    =.
    【点睛】本题考核知识点:一次函数综合应用.解题关键点:熟记一次函数性质,运用数形结合思想.
    26、(1)详见解析;(2)详见解析.
    【解析】
    (1)按照尺规作图的步骤作出图形即可;
    (2)证明AC垂直平分EF,则根据对角线互相垂直平分的四边形为菱形得到四边形AECF是菱形.
    【详解】
    解:(1)如图,就是所求作的的垂直平分线,
    (2)证明:∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠AFE=∠CEF,
    ∵EF垂直平分AC,
    ∴EA=EC,EF⊥AC,
    ∴∠CEF=∠AEF,
    ∴∠AFE=∠AEF,
    ∴AE=AF,
    ∴AC垂直平分EF,
    ∴四边形AECF是菱形.
    本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.
    题号





    总分
    得分
    批阅人
    一周内累计的读书时间(小时)
    5
    8
    10
    14
    人数(个)
    1
    4
    3
    2
    A
    B
    进价(万元/套)
    1.5
    1.2
    售价(万元/套)
    1.65
    1.4

    相关试卷

    湖南省澧县联考2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份湖南省澧县联考2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖南省岳阳市城区十四校联考数学九年级第一学期开学调研模拟试题【含答案】:

    这是一份2025届湖南省岳阳市城区十四校联考数学九年级第一学期开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖南省武冈市第二中学数学九年级第一学期开学质量检测试题【含答案】:

    这是一份2025届湖南省武冈市第二中学数学九年级第一学期开学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map