开学活动
搜索
    上传资料 赚现金

    湖南省益阳市资阳区第六中学2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】

    湖南省益阳市资阳区第六中学2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】第1页
    湖南省益阳市资阳区第六中学2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】第2页
    湖南省益阳市资阳区第六中学2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省益阳市资阳区第六中学2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】

    展开

    这是一份湖南省益阳市资阳区第六中学2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,将正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,如果AB=1,点C与C′的距离为( )
    A.B.C.1D.﹣1
    2、(4分)用配方法解一元二次方程时,下列变形正确的是( )
    A.B.
    C.D.
    3、(4分)关于的一元二次方程的一个根为0,则的值是( )
    A.B.3C.或1D.3或
    4、(4分)如图,平行四边形ABCD中,∠B=60°,AB⊥AC,AC的垂直平分线交AD于点E,△CDE的周长是15,则平行四边形ABCD的面积为( )
    A.B.40C.50D.
    5、(4分)下列各图象中,不是y关于x的函数图象的是( )
    A.B.C.D.
    6、(4分)设的整数部分是,小数部分是,则的值为( ).
    A.B.C.D.
    7、(4分)直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( )
    A.B.C.D.
    8、(4分)对于任意不相等的两个实数,,定义运算如下:.如果,那么的值为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在ΔABC中,AB=8,AC=6,∠BAC=30°,将ΔABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为________.
    10、(4分)直线关于轴对称的直线的解析式为______.
    11、(4分)二次三项式是完全平方式,则的值是__________.
    12、(4分)已知关于的方程的一个根为,则实数的值为( )
    A.B.C.D.
    13、(4分)如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.
    (1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)
    (2)求证:点D到BA,BC的距离相等.
    15、(8分)在平面直角坐标系中,已知点在抛物线()上,且,
    (1)若,求,的值;
    (2)若该抛物线与轴交于点,其对称轴与轴交于点,试求出,的数量关系;
    (3)将该抛物线平移,平移后的抛物线仍经过,点的对应点,当时,求平移后抛物线的顶点所能达到的最高点的坐标.
    16、(8分)如图,在四边形ABCD中,AD//BC,∠A=∠C,CD=2AD,BE⊥AD于点E,F为CD的中点,连接EF、BF.
    (1)求证:四边形ABCD是平行四边形;
    (2)求证:BF平分∠ABC;
    (3)请判断△BEF的形状,并证明你的结论.
    17、(10分)如图,直线 与 轴、轴分别相交于点 和 .
    (1)直接写出坐标:点 ,点 ;
    (2)以线段 为一边在第一象限内作,其顶点 在双曲线 上.
    ①求证:四边形 是正方形;
    ②试探索:将正方形 沿 轴向左平移多少个单位长度时,点 恰好落在双曲线 上.
    18、(10分)(1)计算
    (2)解不等式组,并写出不等式组的非负整数解。
    (3)解分式方程:
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知一次函数y=2x+b,当x=3时,y=10,那么这个一次函数在y轴上的交点坐标为________.
    20、(4分)如图,在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是_____.
    21、(4分)如图,在平行四边形ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC=________ 。
    22、(4分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.
    23、(4分)如图,小明从点出发,前进5 后向右转20°,再前进5 后又向右转20°,这样一直走下去,直到他第一次回到出发点为止,他所走的路径构成了一个多边形
    (1)小明一共走了________米;
    (2)这个多边形的内角和是_________度.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,在ABC中,∠A=80°,BD、CE分别平分∠ABC、∠ACB,BD与CE交于点F.
    (1)求∠BFC的度数;
    (2)如图2,EG、DG分别平分∠AEF、∠ADF, EG与DG交于点G ,求∠EGD的度数.
    25、(10分)化简或求值:
    (1)化简:;
    (2)先化简,再求值:,其中.
    26、(12分)如图,在平面直角坐标系中,一次函数(,、为常数)的图象与反比例函数的图象交于第二、四象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为-1.
    (1)求一次函数的解析式;(2)连接、,求的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    连接CC′,AE,延长AE交CC′于F,由正方形性质可证明△ADE≌△AEB′,所以DE=B′E,根据∠BAB′=30°可知∠DAE=∠EAB′=30°,即可求出DE的长度,进而求出CE的长度,根据∠FEC=60°可知CF的长度,即可求出CC′的长度.
    【详解】
    连接CC′,AE,延长AE交CC′于F,
    ∵正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,
    ∴AD=AB′,∠ADE=∠AB′E=90°,AE=AE,
    ∴△ADE≌△A EB′,
    ∴∠DAE=∠EAB′,
    ∵旋转角为30°,
    ∴∠BAB′=30°,
    ∴∠DAB′=60°,
    ∴∠DAE=∠EAB′=30°,
    ∴AE=2DE,
    ∴AD2+DE2=(2DE)2,
    ∴DE=,
    ∴CE=1-,
    ∵DE=EB′
    ∴EC=EC′,
    ∵∠DEA=∠AEB′=60°,
    ∴∠FEC′=∠FEC=60°,
    ∴∠FCE=30°,
    ∴△FEC≌△FEC′,
    ∴CF=FC′,
    ∴EF⊥CC′,
    ∴EF=CE= ,
    ∴CF= = ,
    ∴CC′=2CF= ,
    故选D.
    本题考查旋转的性质,找出旋转后的边、角的对应等量关系是解题关键.
    2、A
    【解析】
    根据完全平方公式即可进行求解.
    【详解】
    ∵=0
    ∴方程化为
    故选A.
    此题主要考查配方法,解题的关键是熟知完全平方公式的应用.
    3、B
    【解析】
    根据一元二次方程的解的定义,将x=0代入关于x的一元二次方程,列出关于a的一元一次方程,通过解方程即可求得a的值.
    【详解】
    根据题意知,x=0是关于x的一元二次方程的根
    ∴a2-2a-3=0,解得,a=3或a=-1
    又∵a2-1≠0,
    ∴.a≠±1.
    ∴.a=3.
    故选:B.
    本题考查了一元二次方程的解的定义,一元二次方程的解使方程的左右两边相等.
    4、D
    【解析】
    首先证明AD+CD=15,再证明AD=2CD,推出CD=5,AD=10,利用勾股定理求出AC即可解決问题;
    【详解】
    ∵点E在AC的垂直平分线上
    ∴EA=EC
    ∴△CDB的周长=CD+DE+EC=CD+DE+EA=CD+DA=15
    ∵四边形ABCD是平行四边形
    ∴∠B=∠D=60°,AB∥CD
    ∵AB⊥AC,
    ∴AC⊥CD
    ∴∠ACD=90°
    ∴∠CAD=30°
    ∴AD=2CD
    ∴CD=5,AD=10
    ∴AC=
    S =2S△ADC=2×5×5=25
    故选D
    此题考查平行四边形的性质和勾股定理,解题关键在于先证明AD+CD=15,再证明AD=2CD
    5、B
    【解析】
    根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.
    【详解】
    解:由函数的定义可知,
    每一个给定的x,都有唯一确定的y值与其对应的才是函数,
    故选项A、C、D中的函数图象都是y关于x的函数,B中的不是,
    故选:B.
    主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
    6、B
    【解析】
    只需首先对 估算出大小,从而求出其整数部分a,再进一步表示出其小数部分b,然后将其代入所求的代数式求值.
    【详解】
    解:∵4<5<9,
    ∴1<<2,
    ∴-2< <-1.
    ∴1<<2.
    ∴a=1,
    ∴b=5--1=,
    ∴a-b=1-2+=
    故选:B.
    此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算. “夹逼法”是估算的一般方法,也是常用方法.
    7、C
    【解析】
    根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.
    【详解】
    设直角三角形的两条直角边分别为x、y,
    斜边上的中线为d,
    斜边长为2d,
    由勾股定理得,,
    直角三角形的面积为S,

    则,
    则,

    这个三角形周长为:,
    故选C.
    【点睛】本题考查了勾股定理的应用,解题的关键是根据直角三角形的两条直角边长分别是a,b,斜边长为c,得出.
    8、B
    【解析】
    根据列式计算即可.
    【详解】
    ∵,
    ∴=.
    故选B.
    本题考查了新定义运算及二次根式的性质,理解是解答本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、10.
    【解析】
    根据题意可得∠BAC1=90°,根据旋转可知AC1=6,在RtΔBAC1中,利用勾股定理可求得BC1的长=.
    【详解】
    ∵ΔABC绕点A逆时针旋转60°得到ΔAB1C1
    ∴AC=AC1,∠CAC1=60°,
    ∵AB=8,AC=6,∠BAC=30°,
    ∴∠BAC1=90°,AB=8,AC1=6,
    ∴在RtΔBAC1中,BC1的长=,
    故答案为:10.
    本题考查了图形的旋转和勾股定理,通过理解题意将∠BAC1=90°找到即可解题.
    10、
    【解析】
    设函数解析式为:y=kx+b,根据关于y轴对称的两直线k值互为相反数,b值相同可得出答案.
    【详解】
    ∵y=kx+b和y=-3x+1关于y轴对称,
    ∴可得:k=3,b=1.
    ∴函数解析式为y=3x+1.
    故答案为:y=3x+1.
    本题考查一次函数图象与几何变换,掌握直线关于y轴对称点的特点是关键.
    11、17或-7
    【解析】
    利用完全平方公式的结构特征判断即可确定出k的值.
    【详解】
    解:∵二次三项式4x2-(k-5)x+9是完全平方式,
    ∴k-5=±12,
    解得:k=17或k=-7,
    故答案为:17或-7
    此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
    12、A
    【解析】
    根据一元二次方程的根的定义,将根代入进行求解.
    【详解】
    ∵x=−2是方程的根,由一元二次方程的根的定义,可得(−2)2+2k−6=0,
    解此方程得到k=1.
    故选:A.
    考查一元二次方程根的定义,使方程左右两边相等的未知数的值就是方程的解,又叫做方程的根.
    13、5或
    【解析】
    分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.
    详解:∵四边形ABCD是菱形,
    ∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,

    ∴△ABD是等边三角形,
    ∴BD=AB=6,



    ∵点E在AC上,
    ∴当E在点O左边时
    当点E在点O右边时
    ∴或;
    故答案为或.
    点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.
    三、解答题(本大题共5个小题,共48分)
    14、(1)如图所示,DF即为所求,见解析;(2)见解析.
    【解析】
    (1)直接利用过一点作已知直线的垂线作法得出符合题意的图形;
    (2)根据角平分线的性质解答即可.
    【详解】
    (1)如图所示,DF即为所求:
    (2)∵△ABC中,∠A=60°,∠C=40°,
    ∴∠ABC=80°,
    ∵DE垂直平分BC,
    ∴BD=DC,
    ∴∠DBC=∠C=40°,
    ∴∠ABD=∠DBC=40°,
    即BD是∠ABC的平分线,
    ∵DF⊥AB,DE⊥BC,
    ∴DF=DE,
    即点D到BA,BC的距离相等.
    此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.
    15、(1)b=1,c=3;(2);(3)(,)
    【解析】
    (1)把代入得,与构成方程组,解方程组即可求得;
    (2)求得,,,即可得到,,即可求得;
    (3)把化成顶点式,得到,根据平移的规律得到,把代入,进一步得到,即,分类求得,由,得到,即,从而得到平移后的解析式为,得到顶点为,,设,即,即可得到取最大值为,从而得到最高点的坐标.
    【详解】
    解:(1)把代入,可得,
    解,可得,;
    (2)由,得.
    对于,
    当时,.
    抛物线的对称轴为直线.
    所以,,.
    因为,
    所以,,

    (3)由平移前的抛物线,可得
    ,即.
    因为平移后的对应点为
    可知,抛物线向左平移个单位长度,向上平移个单位长度.
    则平移后的抛物线解析式为,
    即.
    把代入,得.


    所以.
    当时,(不合题意,舍去);
    当时,,
    因为,所以.
    所以,
    所以平移后的抛物线解析式为.
    即顶点为,,
    设,即.
    因为,所以当时,随的增大而增大.
    因为,
    所以当时,取最大值为,
    此时,平移后抛物线的顶点所能达到的最高点坐标为,.
    本题是二次函数的综合题,考查了二次函数的图象和系数的关系,二次函数的点的坐标特征,二次函数的图象与几何变换,也考查二次函数的性质.
    16、(1)见解析;(2)见解析;(3)ΔBEF为等腰三角形,见解析.
    【解析】
    (1)由平行线的性质得出∠A+∠ABC=180°,由已知得出∠C+∠ABC=180°,证出AB//BC,即可得出四边形ABCD是平行四边形;
    (2)由平行四边形的性质得出BC=AD,AB//CD,得出∠CFB=∠ABF,由已知得出CF=BC,得出∠CFB=∠CBF,证出∠ABF=∠CBF即可;
    (3)作FG⊥BE于G,证出FG/AD//BC,得出EG=BG,由线段垂直平分线的性质得出EF=BF即可.
    【详解】
    解:(1)证明:∵AD∥BC,
    ∴∠A+∠ABC=180°:
    ∵∠A=∠C
    ∴∠C+∠ABC=180°
    ∴AB∥CD
    ∴四边形ABCD是平行四边形
    (2)证明:
    ∵F点为CD中点
    ∴CD=2CF
    ∴CD=2AD
    ∴CF=AD=BC
    ∴∠CFB=∠CBF
    ∴CD∥AB
    ∴∠CFB=∠FBA
    ∴∠FBA=∠CBF
    ∴BF平分∠ABC
    (3)ΔBEF为等腰三角形
    理由:如图,延长EF交B延长线于点G
    ∴DA∥BG
    ∴∠G=∠DEF
    ∵F为DC中点
    ∴DF=CF
    又∵∠DFE=∠CFG
    ∴ΔDFE≌ΔCFG(AAS)
    ∴FE=FG
    ∵AD∥BC,BE⊥AD
    ∴BE⊥CD
    ∴∠EBG=90°
    在RtΔEBG中,F为BG中点
    ∴BF=EG=EF
    ∴ΔBEF为等腰三角形.
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的性质、平行线的性质等知识;熟练掌握平行四边形的判定与性质是解题的关键/
    17、(1)A,B;(2)①证明见解析②点C恰好落在双曲线 (>)上
    【解析】
    试题分析:(1)分别令x=0,求出y的值;令y=0,求出x的值即可得出点B与点A的坐标;
    (2)①过点D作DE⊥x轴于点E,由全等三角形的性质可得出△AOB≌△DEA,故可得出AB=AD,再利用待定系数法求出直线AD的解析式即可得出AB⊥AD,由此可得出结论;
    ②过点C作CF⊥y轴,利用△AOB≌△DEA,同理可得出:△AOB≌△BFC,即可得出C点纵坐标,如果点在图象上,利用纵坐标求出横坐标即可.
    解:(1)∵令x=0,则y=2;令y=0,则x=1,
    ∴A(1,0),B(0,2).
    故答案为(1,0),(0,2);
    (2)①过点D作DE⊥x轴于点E,
    ∵A(1,0),B(0,2),D(3,1),
    ∴AE=OB=2,OA=DE=1,
    在△AOB与△DEA中,

    ∴△AOB≌△DEA(SAS),
    ∴AB=AD,
    设直线AD的解析式为y=kx+b(k≠0),
    ∴,
    解得,
    ∵(﹣2)×=﹣1,
    ∴AB⊥AD,
    ∵四边形ABCD是正方形;
    ②过点C作CF⊥y轴,
    ∵△AOB≌△DEA,
    ∴同理可得出:△AOB≌△BFC,
    ∴OB=CF=2
    ∵C点纵坐标为:3,
    代入y=,
    ∴x=1,
    ∴应该将正方形ABCD沿X轴向左平移2﹣1=1个单位长度时,点C的对应点恰好落在(1)中的双曲线上.
    【点评】此题主要考查了反比例函数的综合题,根据图象上点的坐标性质以及全等三角形的判定与性质得出是解题关键.
    18、①+2;②0、1;③原方程无解.
    【解析】
    (1)首先计算负指数次幂,0次幂,二次根式的混合运算,去掉绝对值符号,化简二次根式,然后合并同类二次根式即可求解;(2)首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.(3)中因为x2-4=(x+2)(x-2),所以最简公分母为(x+2)(x-2),确定方程的最简公分母后,方程两边乘最简公分母,把分式方程转化为整式方程求解. .
    【详解】
    解(1)原式=3-1-(1-)+-1
    =3-1-1++2-1
    =+2
    (2)
    解不等式①得,x≤1,
    解不等式②得,x<4,
    所以不等式组的解集是x≤1,
    所以不等式组的非负整数解是0、1.
    故答案为:0、1.
    (3)方程两边同乘(x+2)(x-2),
    得:(x-2)2=(x+2)2+16,
    整理解得x=-2.
    经检验x=-2是增根,
    故原方程无解.
    (1)本题考查实数的混合运算、解不等式组和解分式方程;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,去分母时要注意符号的变化.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 (0,4)
    【解析】解:∵在一次函数y=2x+b中,当x=3时,y=10,∴6+b=10,解得:b=4,∴一次函数的解析式为y=2x+4,∴当x=0时,y=4,∴这个一次函数在y轴上的交点坐标为(0,4).故答案为:(0,4).
    点睛:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    20、(2,5).
    【解析】
    连接AB,BC,运用平行四边形性质,可知AD∥BC,所以点D的纵坐标是5,再跟BC间的距离即可推导出点D的纵坐标.
    【详解】
    解:由平行四边形的性质,可知D点的纵坐标一定是5;
    又由C点相对于B点横坐标移动了1﹣(﹣3)=4,故可得点D横坐标为﹣2+4=2,
    即顶点D的坐标(2,5).
    故答案为(2,5).
    本题主要是对平行四边形的性质与点的坐标的表示等知识的直接考查,同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求不高.
    21、
    【解析】
    证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.
    【详解】
    四边形ABCD为平行四边形,CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°
    AC=CD=2,∠ACD=90°
    △ACD为等腰直角三角形
    ∴BC=AD==.
    故答案是:.
    考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.
    22、22.5
    【解析】
    ∵ABCD是正方形,
    ∴∠DBC=∠BCA=45°,
    ∵BP=BC,
    ∴∠BCP=∠BPC=(180°-45°)=67.5°,
    ∴∠ACP度数是67.5°-45°=22.5°
    23、90 2880
    【解析】
    先根据题意判断该多边形的形状,再计算该多边形的边的总长和内角和即可.
    【详解】
    解:由题意知,该多边形为正多边形,
    ∵多边形的外角和恒为360°,
    360÷20=18,
    ∴该正多边形为正18边形.
    (1)小明一共走了:5×18=90(米);
    故答案为90
    (2)这个多边形的内角和为:(18-2)×180°
    =2880°
    故答案为2880
    本题考查了正多边形的相关知识,掌握多边形的内角和定理是解决本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)130〬(2)155〬
    【解析】
    (1)根据三角形的内角和是180°,可知∠BFC=180°-∠FBC-∠FCB,由BD,CE分别平分∠ABC,∠ACB,可知∠FBC=∠ABC,∠FCB=∠ACB,即∠BFC=180°-(∠ABC+∠ACB),再由三角形的内角和是180°,得出∠ABC+∠ACB=180°-∠A,从而求出∠BFC的度数;
    (2)由角平分线的定义可得,,由四边形内角和定理可知,继而得到,再根据四边形内角和定理即可求得答案.
    【详解】
    (1)∵BD、CE分别平分∠ABC、∠ACB,
    ∴,,
    ∵,
    ∴∠BFC=;
    (2)∵EG、DG分别平分∠AEF、∠ADF,
    ∴,,
    ∵,
    ∴ ,
    ∴∠EGD
    .
    本题考查了三角形内角和定理、四边形内角和定理,熟练掌握相关知识是解题的关键.注意数形结合思想的运用.
    25、(1);(2),.
    【解析】
    (1)根据分式的减法和乘法可以化简题目中的式子;
    (2)根据分式的乘法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.
    【详解】
    解:(1)


    (2)
    当时,原式.
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    26、(1);(2).
    【解析】
    (1)利用待定系数法求得反比例函数的解析式,即可得出点B的坐标,再求出一次函数的解析式即可;(2)利用一次函数求得C点坐标,再根据割补法即可得出△AOB的面积.
    【详解】
    (1)解:∵,,
    ∴点的坐标为,
    则,
    得.
    ∴反比例函数的解析式为,
    ∵点的纵坐标是-1,
    ∴,得.
    ∴点的坐标为.
    ∵一次函数的图象过点、点.
    ∴,
    解得:,
    即直线的解析式为.
    (2)∵与轴交与点,
    ∴点的坐标为,
    ∴,

    .
    本题考查了反比例函数与一次函数的交点问题,把两个函数关系式联立方程求解,若方程有解则有交点,反之无交点.
    题号





    总分
    得分

    相关试卷

    海南省海口中学2024-2025学年数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份海南省海口中学2024-2025学年数学九年级第一学期开学学业水平测试模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖南省益阳市资阳区国基实验学校数学九年级第一学期开学统考模拟试题【含答案】:

    这是一份2024年湖南省益阳市资阳区国基实验学校数学九年级第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省金陵中学九年级数学第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024-2025学年江苏省金陵中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map