湖南省湘西土家族苗族自治州名校2024-2025学年数学九上开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
2、(4分)某次知识竞赛共有20道题,每答对一道题得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x道题,则根据题意可列不等式为( )
A.10x-5(20-x)≥90B.10x-5(20-x)>90
C.20×10-5x>90D.20×10-5x≥90
3、(4分)如图,在中,,垂足为,,,则的长为( )
A.B.C.D.
4、(4分)如图,矩形ABCD的对角线交于点O.若∠BAO=55°,则∠AOD等于( )
A.110°B.115°C.120°D.125°
5、(4分)下列代数式变形正确的是( )
A.B.
C.D.
6、(4分)若分式有意义,则x应满足的条件是( )
A.B.C.D.
7、(4分)随着人民生活水平的提高,中国春节已经成为中国公民旅游黄金周.国家旅游局数据显示,2017年春节中国公民出境旅游约615万人次,2018,2019两年出境旅游人数持续增长,在2019年春节出境旅游达到700万人次,设2018年与2019年春节出境旅游总量较上一年春节的平均增长率为,则下列方程正确的是( ).
A.615(1+x)=700B.615(1+2x)=700
C.D.
8、(4分)如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2B.3C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)根据如图所示的程序,当输入x=3时,输出的结果y=________.
10、(4分)在中,,,,_______.
11、(4分)直线y=3x+2沿y轴向下平移4个单位,则平移后直线与y轴的交点坐标为_______.
12、(4分)若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=_______.
13、(4分)古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学八年级组织了一次“汉字听写比赛”,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中A等级得分为100分,B等级得分为85分,C等级得分为75分,D等级得分为60分,语文教研组将八年级一班和二班的成绩整理并绘制成如下的统计图,请根损换供的信息解答下列问题.
(1)把一班比赛成统计图补充完整;
(2)填表:
表格中:a=______,b=______,c=_______.
(3)请从以下给出的两个方面对这次比赛成绩的结果进行分析:
①从平均数、众数方面来比较一班和二班的成绩;
②从B级以上(包括B级)的人数方面来比较-班和二班的成绩.
15、(8分)如图,在平行四边形ABCD中,AE平分∠BAD交BC于点E.
(1)作CF平分∠BCD交AD于点F(用尺规作图,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,求证:△ABE≌△CDF.
16、(8分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.
(1)求出这10名女生的身高的中位数和众数;
(2)依据样本估计该校八年级全体女生的平均身高;
(3)请你根据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).
17、(10分)计算
(1)分解因式:;
(2)解不等式组.
18、(10分)已知:,,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是_____.
20、(4分)如图,矩形ABCD中,,,CE是的平分线与边AB的交点,则BE的长为______.
21、(4分)某种数据方差的计算公式是,则该组数据的总和为_________________.
22、(4分)如图,一次函数的图象与x轴、y轴分别交于点A、B,将沿直线AB翻折得到,连接OC,那么线段OC的长为______.
23、(4分)已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.
(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.
①求证:MA=MC;
②求MN的长;
(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG的面积
25、(10分)直线与抛物线交于、两点,其中在轴上,是抛物线的顶点.
(1)求与的函数解析式;
(2)求函数值时的取值范围.
26、(12分)平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:与x轴交于点C,与直线l1交于点P.
(1)当k=1时,求点P的坐标;
(2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;
(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据轴对称图形和中心对称图形的概念识别即可.(轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形是指在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合.)
【详解】
解:A 选项不是轴对称图形,是中心对称图形;
B 选项是轴对称图形,不是中心对称图形;
C 选项是轴对称图形,不是中心对称图形;
D 选项既是轴对称图形,又是中心对称图形,
故选D.
本题主要考查轴对称图形和中心对称图形的识别,这是重点知识,必须熟练掌握,关键在于根据概念判断.
2、B
【解析】
据答对题的得分:10x;答错题的得分:-5(20-x),得出不等关系:得分要超过1分.
【详解】
解:根据题意,得
10x-5(20-x)>1.
故选:B.
本题考查由实际问题抽象出一元一次不等式,要特别注意:答错或不答都扣5分,至少即大于或等于.
3、A
【解析】
根据题意,可以证得△ACD∽△CBD,进而得到,由已知数据代入即可.
【详解】
由题意知,,
∴∠ADC=∠BDC=90°,∠A=∠BCD,
∴△ACD∽△CBD,
∴,
即,
∵,,
∴CD=4,
故选:A.
本题考查了直角三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.
4、A
【解析】
由矩形的对角线互相平分得,OA=OB,再由三角形的外角性质得到∠AOD等于∠BAO和∠ABO之和即可求解.
【详解】
解:∵四边形ABCD是矩形,
∴AC=BD,OA=OB,
∠BAO=∠ABO=55°,
∠AOD=∠BAO+∠ABO =55°+55°=110°.
故答案为:A
本题考查了矩形的性质及外角的性质,熟练利用外角的性质求角度是解题的关键.
5、D
【解析】
利用分式的基本性质对四个选项一一进行恒等变形,即可得出正确答案.
【详解】
解:A.,故本选项变形错误;
B. ,故本选项变形错误;
C.,故本选项变形错误;
D.,故本选项变形正确,
故选D.
本题考查了分式的基本性质.熟练应用分式的基本性质对分式进行约分和通分是解题的关键.
6、A
【解析】
本题主要考查分式有意义的条件:分母不能为0
【详解】
解:∵x-2≠0,
∴x≠2,
故选:A.
本题考查的是分式有意义的条件,当分母不为0时,分式有意义.
7、C
【解析】
设2018年与2019年春节出境旅游总量较上一年春节的平均增长率为,根据2017年及2019年出境旅游人数,即可得出关于的一元二次方程,即可得解;
【详解】
由题意可得:
故选:C.
本题主要考查一元二次方程的实际应用,充分理解题意是解决本题的关键.
8、D
【解析】
分析:连接EF交AC于点M,由菱形的性质可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理和解直角三角形的性质求解即可.
详解:如图,连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=10,且tan∠BAC=;在Rt△AME中,AM= AC=5 ,tan∠BAC=,可得EM= ;在Rt△AME中,由勾股定理求得AE= =1.2.
故选:B.
点睛:此题主要考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定与性质及锐角三角函数的知识,综合运用这些知识是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据自变量与函数值的对应关系,可得相应的函数值.
【详解】
当x=3时,y=﹣3+5=1.
故答案为:1.
本题考查了函数值,将自变量的值代入相应的函数关系式是解题的关键.
10、1
【解析】
根据10°所对的直角边等于斜边的一半求解.
【详解】
解:∵∠C=90°,∠A=10°,BC=,
∴AB=2BC=1.
故答案为:1.
本题考查含10°角的直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.
11、(0,-2)
【解析】
y=3x+2沿y轴向下平移4个单位y=3x+2-4=3x-2,
令x=0,y=-2, 所以(0,-2).
故交点坐标(0,-2).
12、1.
【解析】
试题分析:关于y轴对称的两点横坐标互为相反数,纵坐标相等,则m+2=4,n+5=3,解得:m=2,n=-2,则m+n=2+(-2)=1.
考点:关于y轴对称
13、25%.
【解析】
设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,则当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,甲、乙蜂蜜售出瓶数分别为ax、3bx;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,甲、乙蜂蜜售出瓶数分别为3ax、2bx;列出方程,解方程求出,即可得出结果.
【详解】
解:设甲、乙、丙三种麦片的进价分别为a、b、c,丙麦片售出袋数为cx,
由题意得:,
解得:,
∴,
故答案为:25%.
本题考查了方程思想解决实际问题,解题的关键是通过题意列出方程,得出a、b、c的关系,进而求出利润率.
三、解答题(本大题共5个小题,共48分)
14、 (1) 统计图补充完整如图所示见解析;(2)二班的平均数为:a=82.8 ,一班的中位数为:b=85, 二班的众数为:c=100 ; (3)①从平均数和众数的角度来比较二班的成绩更好;②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
【解析】
(1)根据题意和表格中的数据可以求得一班C等级的学生数,从而可以解答本题;
(2)根据表格中的数据可以求得一班的平均数和中位数,以及二班的众数;
(3)根据表格中的数据,可以从两方面比较一班和二班成绩的情况.
【详解】
解:(1)一班中C级的有25-6-12-5=2人
如图所示
(2) 一班的平均数为:a= =82.8,
一班的中位数为:b=85
二班的众数为:c=100 ;
(3)①从平均数和众数的角度来比较二班的成绩更好;
②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
故答案为(1) 统计图补充完整如图所示见解析;(2)二班的平均数为:a=82.8 ,一班的中位数为:b=85, 二班的众数为:c=100 ; (3)①从平均数和众数的角度来比较二班的成绩更好;②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
本题考查条形统计图、扇形统计图、众数、中位数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
15、见解析
【解析】
(1)以点C为圆心,任意长为半径画弧,交CD,BC于两点,分别以这两点为圆心,大于这两点距离的一半为半径画弧,在平行四边形内交于一点,过点C以及这个交点作射线,交AD于点F即可;
(2)根据ASA即可证明:△ABE≌△CDF.
【详解】
(1)如图所示:CF即为所求作的;
(2)∵四边形ABCD是平行四边形,
∴AB=CD,∠B=∠D,∠BAD=∠BCD,
∵AE平分∠BAD,CF平分∠BCD,
∴∠BAE=∠DCF,
在△ABE和△CDF中
,
∴△ABE≌△CDF.
本题考查了平行四边形的性质、全等三角形的判定、尺规作图—作角平分线,熟练掌握尺规作图的方法以及全等三角形的判定方法是解题的关键.
16、 (1)众数162,中位数161.5;(2)161cm;(3).
【解析】
(1)根据统计图中的数据可以求得这组数据的中位数和众数;
(2)根据加权平均数的求法可以解答本题;
(3)根据题意可以设计出合理的方案,注意本题答案不唯一.
【详解】
解:(1)这10名女生的身高为:154、158、158、161、161、162、162、162、165、167,
∴这10名女生的身高的中位数是:cm,众数是162cm,
即这10名女生的身高的中位数和众数分别是161.5cm、162cm;
(2)平均身高.
(3)可以先将八年级身高是162cm的所有女生挑选出来,若不够,再挑选身高与162cm最接近的,直到挑选到50人为止.
本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、(1)y(x−y)1;(1)−3≤x<1.
【解析】
(1)直接提取公因式y,再利用公式法分解因式得出答案;
(1)分别解不等式进而得出不等式组的解集.
【详解】
解:(1)x1y−1xy1+y3
=y(x1−1xy+y1)
=y(x−y)1;
(1),
解①得:x<1,
解②得:x≥−3,
故不等式组的解集为:−3≤x<1.
此题主要考查了提取公因式法以及公式法分解因式、不等式组的解法,正确掌握解题方法是解题关键.
18、3
【解析】
直接将代入求值比较麻烦,因此,可将原式化为含有的式子,再计算出 的值代入即可.
【详解】
解:∵,,∴,.
∴原式.
本题考查了乘法公式,灵活应用乘法公式将整式变形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
结合题意分析函数图象:线段OC对应甲乙同时从A地出发到A返回前的过程,此过程为1小时;线段CD对应甲返回走到与乙相遇的过程(即甲的速度大于乙的速度);线段DE对应甲与乙相遇后继续返回走至到达A地的过程,因为速度相同,所以甲去和回所用时间相同,即x=2时,甲回到A地,此时甲乙相距120km,即乙2小时行驶120千米;线段EF对应甲从A地重新出发到追上乙的过程,即甲用(5﹣2)小时的时间追上乙,可列方程求出甲此时的速度,进而求出甲到达B地的时刻,再求出此时乙所行驶的路程.
【详解】
解:∵甲出发到返回用时1小时,返回后速度不变,
∴返回到A地的时刻为x=2,此时y=120,
∴乙的速度为60千米/时,
设甲重新出发后的速度为v千米/时,列得方程:
(5﹣2)(v﹣60)=120,
解得:v=100,
设甲在第t小时到达B地,列得方程:
100(t﹣2)=10
解得:t=6,
∴此时乙行驶的路程为:60×6=360(千米),
乙离B地距离为:10﹣360=1(千米).
故答案为:1.
本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.
20、
【解析】
分析:作于由≌,推出,,,设,则,在中,根据,构建方程求出x即可;
详解:作于H.
四边形ABCD是矩形,
,
,
在和中,
,
≌,
,,,设,则,
在中,,
,
,
,
故答案为:.
点睛:本题考查矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
21、32
【解析】
根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.
【详解】
∵数据方差的计算公式是,
∴样本容量为8,平均数为4,
∴该组数据的总和为8×4=32,
故答案为:32
本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为x,则方差s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],平均数是指在一组数据中所有数据之和再除以数据的个数.
22、.
【解析】
利用一次函数图象上点的坐标特征求得点A、B的坐标,易得线段AB的长度,然后利用面积法求得OD的长度,结合翻折图形性质得到.
【详解】
解:如图,设直线OC与直线AB的交点为点D,
一次函数的图象与x轴、y轴分别交于点A、B,
、,
,,,
将沿直线AB翻折得到,
,
,
.
故答案是:.
考查了一次函数图象与几何变换,此题将求线段OC的长度转换为求直角三角形AOB斜边上高的问题,降低了题目的难度.
23、
【解析】
设一次函数的解析式为:,利用待定系数法把已知点的坐标代入解析式,解方程组即可得答案.
【详解】
解:设一次函数的解析式为:,
解得:
所以这个一次函数的解析式为:
故答案为:
本题考查的是利用待定系数法求解一次函数的解析式,掌握待定系数法是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)①见解析;②;(2)△BEG的面积为48﹣6或48+6
【解析】
(1)①由矩形的性质得出,得出,由旋转的性质得:,证出,即可得出;
②设,则,在中,由勾股定理得出方程,解得:,在中,由勾股定理得出,得出,证出,得出即可;
(2)分情况讨论:①过点作于,证明,得出,,在中,由勾股定理得出,得出,得出,得出的面积的面积;
②同①得:,,得出,得出的面积的面积即可.
【详解】
(1)①证明:四边形是矩形,
,
,
由旋转的性质得:,
,
;
②解:设,则,
在中,,
解得:,
在中,,
,
,
,
又,
,
;
(2)解:分情况讨论:
①如图2所示:过点作于,则,
在和中,,
,
,,
在中,,
,
,
的面积的面积;
②如图3所示:
同①得:,,
,
的面积的面积;
综上所述,的面积为或.
本题是四边形综合题目,考查了矩形的性质、旋转变换的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、三角形面积、分类讨论等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.
25、(1),;(2)
【解析】
(1)将代入求得m,确定一个解析式;由P点在x轴上,即纵坐标为0,确定P的坐标,再结合顶点式,即可确定第二个解析式;
(2)由(1)得到得解析式,然后列出不等式,解不等式即可.
【详解】
(1)把代入,
∴,
∴,
∴,
∴令,,
∴,
∴,
∵抛物线的顶点为,
∴设抛物线.
代入得,
∴,
即.
(2)由题意得:x+1<
解得:.
本题主要考查了待定系数法确定解析式和解不等式,其中解不等式是解答本题的关键.
26、(2)P(,);(2);(3)(,)
【解析】
(2把k=2代入l2解析式,当k=2时,直线l2为y=x+2.与l2组成方程组
, 解这个方程组得:,
∴P(,);
(2)当y=0时,kx+2k=0 ,∵k≠0,∴x=-2,
∴C(-2,0),OC=2,当y=0时,-x+3=0,∴x=6,
∴A(6,0),OA=6 ,
过点P作PG⊥DF于点G,
在△PDG和△ADE中,
∴△PDG≌△ADE,
得DE=DG=DF,
∴PD=PF,
∴∠PFD=∠PDF
∵∠PFD+∠PCA=90°,∠PDF+∠PAC=90°
∴∠PCA=∠PAC,
∴PC=PA
过点P作PH⊥CA于点H,
∴CH=CA=4,
∴OH=2,
当x=2时,y=−×2+3=2代入y=kx+2k,得k=;
(3)在Rt△PMC和Rt△PQR中,
∴Rt△PMC≌Rt△PQR,
∴CM=RQ,
∴NR=NC,
设NR=NC=a,则R(−a−2,a),
代入y=−x+3,
得− (−a−2)+3=a,解得a=8,
设P(m,n),则
解得
∴P(,)
考点:2.一次函数与二元一次方程组综合题;2.三角形全等的运用.
题号
一
二
三
四
五
总分
得分
批阅人
平均数(分)
中位数(分)
众数(分)
一班
a
b
85
二班
84
75
c
湖南省益阳地区2024-2025学年九上数学开学统考模拟试题【含答案】: 这是一份湖南省益阳地区2024-2025学年九上数学开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省新化县上梅中学2024-2025学年九上数学开学考试模拟试题【含答案】: 这是一份湖南省新化县上梅中学2024-2025学年九上数学开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省郴州市名校2024-2025学年数学九上开学质量检测模拟试题【含答案】: 这是一份湖南省郴州市名校2024-2025学年数学九上开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。