搜索
    上传资料 赚现金
    英语朗读宝

    湖南省长沙青竹湖湘一外国语学校2025届九年级数学第一学期开学监测试题【含答案】

    湖南省长沙青竹湖湘一外国语学校2025届九年级数学第一学期开学监测试题【含答案】第1页
    湖南省长沙青竹湖湘一外国语学校2025届九年级数学第一学期开学监测试题【含答案】第2页
    湖南省长沙青竹湖湘一外国语学校2025届九年级数学第一学期开学监测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省长沙青竹湖湘一外国语学校2025届九年级数学第一学期开学监测试题【含答案】

    展开

    这是一份湖南省长沙青竹湖湘一外国语学校2025届九年级数学第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某校随机抽查了八年级的30名女生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图(每组含前一个边界,不含后一个边界),则次数不低于42个的有( )
    A.6人B.8个C.14个D.23个
    2、(4分)若关于的分式方程有增根,则的值是( ).
    A.B.
    C.D.或
    3、(4分)如图,菱形中,,这个菱形的周长是( )
    A.B.C.D.
    4、(4分)如图,某工厂有甲,乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度 与注水时间 之间的函数关系图象可能是如图,某工厂有甲,乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度 与注水时间 之间的函数关系图象可能是( )
    A.B.C.D.
    5、(4分)如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为40m,那么AB的长度为( )
    A.40mB.80mC.160mD.不能确定
    6、(4分)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有( )
    A.1个B.2个C.3个D.4个
    7、(4分)如图,点在双曲线上,点在双曲线上,且轴,、在轴上,若四边形为矩形,则它的面积为( )
    A.1B.2C.3D.4
    8、(4分)如图,等腰三角形的底边长为,面积是, 腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若+( x-y+3)2=0,则(x+y)2018=__________.
    10、(4分)如图,Rt△ABC中,∠ACB=90°,BC=AC=3,点D是BC边上一点,∠DAC=30°,点E是AD边上一点,CE绕点C逆时针旋转90°得到CF,连接DF,DF的最小值是___.
    11、(4分)计算:_____.
    12、(4分)如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.
    13、(4分)计算的结果等于______________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)用适当方法解方程:
    (1)
    (2)
    15、(8分)如图,四边形和四边形都是平行四边形.
    求证:四边形是平行四边形.
    16、(8分)某校计划购进A,B两种树木共100棵进行校园绿化,已知A种树木每棵100元,B种树木每棵80元,因布局需要,购买A种树木的数量不少于B种树木数量的3倍,实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
    17、(10分)如图,在四边形中,,,,为的中点,连接.
    (1)求证:四边形是菱形;
    (2)连接,若平分,,求的长.
    18、(10分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)
    (1)求b,m的值
    (2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,已知,,平分,交边于点E,则 ___________ .
    20、(4分)如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是.
    21、(4分)如果最简二次根式与最简二次根式同类二次根式,则x=_______.
    22、(4分)式子有意义的条件是__________.
    23、(4分)若个数,,,的中位数为,则_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,P、Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(顶点都在格点上的四边形称为格点四边形)
    (1)在图①中画出一个面积最小的中心对称图形PAQB,
    (2)在图②中画出一个四边形PCQD,使其是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.
    25、(10分)如图,在Rt△ABC中,∠C=90°,E是AB上的点,且AE=AC,DE⊥AB交BC于D,AC=6,BC=8,CD=1.
    (1)求DE的长;
    (2)求△ADB的面积.
    26、(12分)(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
    (2)结论应用:① 如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.
    ② 若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断 MN与EF是否平行?请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    分析:由频数分布直方图可知仰卧起坐的次数x在42≤x<46的有8人,46≤x<50的有6人,可得答案.
    详解:由频数分布直方图可知,次数不低于42个的有8+6=14(人),
    故选:C.
    点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    2、A
    【解析】
    方程两边都乘以最简公分母(x-3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.
    【详解】
    方程两边都乘以(x−3)得,
    2−x−m=2(x−3),
    ∵分式方程有增根,
    ∴x−3=0,
    解得x=3,
    ∴2−3−m=2(3−3),
    解得m=−1.
    故选A.
    3、C
    【解析】
    通过菱形性质及勾股定理求出边AB的值,周长为4AB即可.
    【详解】
    解:因为四边形ABCD是菱形,
    所以AC⊥BD,设AC与BD交于点O,
    则AO=1,BO=2,
    所以AB=.
    周长为4AB=4.
    故选:C.
    本题主要考查了菱形的性质,解决四边形问题一般转化为三角形问题.
    4、D
    【解析】
    根据注水后水进入水池情况,结合特殊点的实际意义即可求出答案.
    【详解】
    解:该蓄水池就是一个连通器.开始时注入甲池,乙池无水,
    当甲池中水位到达与乙池的连接处时,乙池才开始注水,所以A、B不正确,
    此时甲池水位不变,所有水注入乙池,所以水位上升快.
    当乙池水位到达连接处时,所注入的水使甲乙两个水池同时升高,所以升高速度变慢.
    在乙池水位超过连通部分,甲和乙部分同时升高,但蓄水池底变小,此时比连通部分快. 故选:D.
    主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
    5、B
    【解析】
    根据三角形中位线定理计算即可
    【详解】
    ∵M、N分别是AC、BC中点,
    ∴NM是△ACB的中位线,
    ∴AB=2MN=80m,
    故选:B.
    此题考查三角形中位线定理,解题关键在于掌握运算法则
    6、A
    【解析】
    由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为40,可求得t,可得出答案.
    【详解】
    由图象可知A、B两城市之间的距离为300km,故①正确;
    甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②错误;
    设甲车离开A城的距离y与t的关系式为y甲=kt,
    把(5,300)代入可求得k=60,
    ∴y甲=60t,
    把y=150代入y甲=60t,可得:t=2.5,
    设乙车离开A城的距离y与t的关系式为y乙=mt+n,
    把(1,0)和(2.5,150)代入可得,解得,
    ∴y乙=100t﹣100,
    令y甲=y乙可得:60t=100t﹣100,解得t=2.5,
    即甲、乙两直线的交点横坐标为t=2.5,
    此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;
    令|y甲﹣y乙|=40,可得|60t﹣100t+100|=40,即|100﹣40t|=40,
    当100﹣40t=40时,可解得t=,
    当100﹣40t=﹣40时,可解得t=,
    又当t=时,y甲=40,此时乙还没出发,
    当t=时,乙到达B城,y甲=260;
    综上可知当t的值为或或或t=时,两车相距40千米,故④不正确;
    故选A.
    本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.
    7、B
    【解析】
    根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.
    【详解】
    解:过A点作AE⊥y轴,垂足为E,
    ∵点A在双曲线y=上,
    ∴四边形AEOD的面积为1,
    ∵点B在双曲线y=上,且AB∥x轴,
    ∴四边形BEOC的面积为3,
    ∴四边形ABCD为矩形,则它的面积为3−1=2.
    故选B.
    8、C
    【解析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
    【详解】
    解:连接AD,
    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=(CM+MD)+CD
    故选:C.
    本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    分析:根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x、y的值,计算即可.
    详解:由题意得:x+2=0,x﹣y+3=0,解得:x=﹣2,y=1,则(x+y)2018=(-2+1)2018=1.
    故答案为:1.
    点睛:本题考查了非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
    10、.
    【解析】
    先依据条件判定△ACE≌△BCF,可得∠CBF=∠CAE=30°,即可得到点F在射线BF上,由此可得当DF⊥BF时,DF最小,依据∠DBF=30°,即可得到DF=BD=
    【详解】
    由旋转可得,FC=EC,∠ECF=90°,
    又∵∠ACB=90°,BC=AC=3,
    ∴∠CAE=∠CBF,
    ∴△ACE≌△BCF,
    ∴∠CBF=∠CAE=30°,
    ∴点F在射线BF上,
    如图,当DF⊥BF时,DF最小,
    又∵Rt△ACD中,∠CAD=30°,AC=3=BC,
    ∴CD= ,
    ∴BD=3﹣,
    又∵∠DBF=30°,
    ∴DF= BD=,
    故答案为 .
    本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,得到点F的运动轨迹是本题的难点.
    11、1
    【解析】
    【分析】根据同分母分式加减法的法则进行计算即可得.
    【详解】
    =
    =1,
    故答案为1.
    【点睛】本题考查了同分母分式的加减法,熟练掌握同分母分式加减法的法则是解题的关键.
    12、①②③④
    【解析】
    首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.
    【详解】
    ∵△ABD和△ACE都是等边三角形,
    ∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.
    ∵F是AB的中点,
    ∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.
    ∵∠BAC=30°,∠ACB=90°,AD=2AF.
    ∴BC=AB,∠ADF=∠BAC,
    ∴AF=BF=BC.
    在Rt△ADF和Rt△BAC中
    AD=BA ,AF=BC,
    ∴Rt△ADF≌Rt△BAC(HL),
    ∴DF=AC,
    ∴AE=DF.
    ∵∠BAC=30°,
    ∴∠BAC+∠CAE=∠BAE=90°,
    ∴∠DFA=∠EAB,
    ∴DF∥AE,
    ∴四边形ADFE是平行四边形,故②正确;
    ∴AD=EF,AD∥EF,
    设AC交EF于点H,
    ∴∠DAC=∠AHE.
    ∵∠DAC=∠DAB+∠BAC=90°,
    ∴∠AHE=90°,
    ∴EF⊥AC.①正确;
    ∵四边形ADFE是平行四边形,
    ∴2GF=2GA=AF.
    ∴AD=4AG.故③正确.
    在Rt△DBF和Rt△EFA中
    BD=FE,DF=EA,
    ∴Rt△DBF≌Rt△EFA(HL).故④正确,
    故答案为:①②③④.
    本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.
    13、
    【解析】
    先用平方差公式,再根据二次根式的性质计算可得.
    【详解】
    解:原式=
    =-
    =5-9
    =-4
    故答案为:-4
    本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)x1=1+,x2=1−;(2)x1=-1,x2=1.
    【解析】
    (1)在本题中,把常数项-4移项后,应该在左右两边同时加上一次项系数-2的一半的平方,配方后即可解答.
    (2)利用直接开方法得到,然后解两个一次方程即可.
    【详解】
    (1)解:由原方程移项,得x2-2x=4,
    等式两边同时加上一次项系数一半的平方,得x2−2x+1=5,
    配方,得(x−1)2=5,
    ∴x=1±
    ∴x1=1+,x2=1−.
    (2)解:
    或,
    ∴x1=-1,x2=1.
    本题主要考查一元二次方程的解法,掌握解法是解题的关键.
    15、详见解析
    【解析】
    首先根据平行四边形的性质,得出,,,,进而得出,,即可判定.
    【详解】
    ∵四边形是平行四边形,
    ∴,
    ∵四边形是平行四边形,
    ∴,
    ∴,
    ∴四边形是平行四边形
    此题主要考查平行四边形的性质和判定,熟练掌握,即可解题.
    16、购买A种树木75棵,购买B种树木25棵,实际所花费用最省,最省的费用为8550元.
    【解析】
    设购买A种树木x棵,则购买B种树木(100﹣x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”,列出关于x的一元一次不等式,求得x的取值范围,根据“A种树木每棵100元,B种树木每棵80元,实际付款总金额按市场价九折优惠,”把实际付款的总金额W用x表示出来,根据x的取值范围,求出W的最小值,即可得到答案.
    【详解】
    设购买A种树木x棵,则购买B种树木(100﹣x)棵,
    根据题意得:x≥3(100﹣x),
    解得:x≥75,
    设实际付款的总金额为W元,
    根据题意得:W=0.9[100x+80(100﹣x)]=18x+7200,
    W是关于x的一次函数,且随着x的增大而增大,
    即当x取到最小值75时,W取到最小值,
    W最小=18×75+7200=8550,
    100﹣75=25,
    即购买A种树木75棵,购买B种树木25棵,
    答:购买A种树木75棵,购买B种树木25棵,实际所花费用最省,最省的费用为8550元.
    本题考查了一元一次不等式的应用和一次函数的性质,正确找出不等关系,列出一元一次不等式,并正确利用一次函数的增减性是解决本题的关键.
    17、(1)详见解析;(2)
    【解析】
    (1)由,,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;
    (2)可证AB=BC,由勾股定理可求出.
    【详解】
    (1)∵为中点,∴;
    ∵,∴;
    ∵,∴四边形是平行四边形.
    ∵,为的中点,∴.
    ∴平行四边形是菱形 .
    (2)∵平分,∴;
    ∵,∴,
    ∴,∴;
    在中,,,.
    本题考查菱形的判定和性质、直角三角形斜边中线的性质、等腰三角形的判定,勾股定理等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.
    18、(1)-1;(2)或.
    【解析】
    (1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;
    (2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.
    【详解】
    (1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;
    ∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.
    (2)当x=a时,yC=2a+1;
    当x=a时,yD=4﹣a.
    ∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=,∴a=或a=.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.
    【详解】
    解:中,AD//BC,
    平分
    故答案为1.
    本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
    20、1
    【解析】
    试题分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,AC=12,根据勾股定理可求得OB的长,继而求得答案.
    解:∵四边形ABCD是平行四边形,AC=12,
    ∴OA=AC=6,BD=2OB,
    ∵AB⊥AC,AB=8,
    ∴OB===10,
    ∴BD=2OB=1.
    故答案为:1.
    21、1
    【解析】
    ∵最简二次根式与最简二次根式是同类二次根式,
    ∴x+3=1+1x,解得:x=1.当x=1时,6和是最简二次根式且是同类二次根式.
    22、且
    【解析】
    式子有意义,则x-2≥0,x-3≠0,解出x的范围即可.
    【详解】
    式子有意义,则x-2≥0,x-3≠0,解得:,,故答案为且.
    此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.
    23、
    【解析】
    根据中位数的概念求解.
    【详解】
    解:∵5,x,8,10的中位数为7,
    ∴,
    解得:x=1.
    故答案为:1.
    本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    二、解答题(本大题共3个小题,共30分)
    24、(1)画图见解析;(2)画图见解析.
    【解析】
    (1)利用方格纸的特点及几何图形的计算方法,利用割补法,把四边形PAQB的面积转化为△PAQ与△PBQ的面积之和,根据两个三角形的底PQ一定时,要使面积最小,则满足高最小,且同时满足顶点都在格点上即可得答案;(2)根据题意,画出的四边形是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到可知此四边形是等腰梯形,根据方格纸的特点,作出满足条件的图形即可.
    【详解】
    (1)∵PQ为对角线,
    ∴S四边形PAQB=S△PAQ+S△PBQ,
    ∵PQ一定时,高最小时,△PAQ与△PBQ的面积最小,A、B在格点上,
    ∴高为1,
    ∴四边形PAQB如图①所示:
    (2)∵四边形PCQD是轴对称图形但不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到,
    ∴四边形PCQD是等腰梯形,
    ∴四边形PCQD如图②所示:
    本题考查了作图——旋转变化及利用割补法计算几何图形的面积,熟练掌握旋转的性质及方格纸的特点是解题关键.
    25、(1)1;(2)15
    【解析】
    (1)通过证明,即可得出DE的长;
    (2)根据三角形面积公式求解即可.
    【详解】
    (1)∵DE⊥AB

    ∴在中


    (2)∵BC=8,CD=1


    本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理、三角形面积公式是解题的关键.
    26、(1)AB∥CD.理由见解析;(1)①证明见解析;②MN∥EF.理由见解析.
    【解析】
    (1)分别过点C,D,作CG⊥AB,DH⊥AB,然后证明四边形CGHD为平行四边形后可得AB∥CD;(1)①连结MF,NE. 设点M的坐标为(x1,y1),点N的坐标为(x1,y1).利用反比例函数的性质结合条件得出S△EFM=S△EFN.可得MN∥EF.(3)MN∥EF. 证明与①类似.
    【详解】
    解:(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,
    则∠CGA=∠DHB=90°.
    ∴CG∥DH.
    ∵△ABC与△ABD的面积相等,
    ∴CG=DH.
    ∴ 四边形CGHD为平行四边形.
    ∴AB∥CD.
    (1)①连结MF,NE.
    设点M的坐标为(x1,y1),点N的坐标为(x1,y1).
    ∵ 点M,N在反比例函数(k>0)的图象上,
    ∴,
    ∵ME⊥y轴,NF⊥x轴
    ∴OE=y1,OF=x1.
    ∴S△EFM=
    S△EFN=.
    ∴S△EFM=S△EFN.
    由(1)中的结论可知:MN∥EF.
    ② MN∥EF. 证明与①类似,略.
    本题考查1.平行四边形的判定与性质1.反比例函数的性质,综合性较强.
    题号





    总分
    得分

    相关试卷

    湖南省长沙市青竹湖湘一外国语学校2024-2025学年九上数学开学联考模拟试题【含答案】:

    这是一份湖南省长沙市青竹湖湘一外国语学校2024-2025学年九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省长沙市青竹湖湘一外国语学校2024-2025学年九上数学开学监测模拟试题【含答案】:

    这是一份湖南省长沙市青竹湖湘一外国语学校2024-2025学年九上数学开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省长沙市开福区青竹湖湘一外国语学校2024-2025学年九年级数学第一学期开学统考试题【含答案】:

    这是一份湖南省长沙市开福区青竹湖湘一外国语学校2024-2025学年九年级数学第一学期开学统考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map