湖南省长沙市湘一立信实验学校2024年九上数学开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在直角三角形中,两条直角边长分别为2和3,则其斜边长为( )
A.B.C.或D.或
2、(4分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是( )
A.x>0B.x<0C.x>-1D.x>2
3、(4分)在学校举行的“阳光少年,励志青年”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( )
A.95B.90C.85D.80
4、(4分)设x1、x2是方程x²+x-1=0的两根,则x1+x2=( )
A.-3B.-1C.1D.3
5、(4分)某中学田径队的18名队员的年龄情况如下表:
则这些队员年龄的众数和中位数分别是( )
A.15,15B.15,15.5C.15,16D.16,15
6、(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连接OE.若∠ADB=30°,∠BAD=100°,则∠BDC的度数是( )
A.50°B.60°C.70°D.80°
7、(4分)七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a,中位数是b,众数是c,则有( )
A.c>b>aB.b>c>aC.c>a>bD.a>b>c
8、(4分)在ABCD中,∠A=40°,则∠C=( )
A.40°B.50°C.130°D.140°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次为95,90,1.则小桐这学期的体育成绩是__________.
10、(4分)已知点及第二象限的动点,且.设的面积为,则关于的函数关系式为________.
11、(4分)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.
12、(4分)如图,在菱形中,,菱形的面积为15,则菱形的对角线之和为__.
13、(4分)把我们平时使用的一副三角板,如图叠放在一起,则∠的度数是___度.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简再求值:,其中a=-2。
15、(8分)某校八年级一班20名女生某次体育测试的成绩统计如下:
(1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;
(2)在(1)的条件下,设20名学生测试成绩的众数是a,中位数是b,求的值.
16、(8分)如图,是等边三角形,,点是射线上任意点(点与点不重合),连接,将线段绕点顺时针旋转得到线段,连接并延长交直线于点.
(1)如图①,猜想的度数是__________;
(2)如图②,图③,当是锐角或钝角时,其他条件不变,猜想的度数,并选取其中一种情况进行证明;
(3)如图③,若,,,则的长为__________.
17、(10分)如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.
18、(10分)计算:6﹣5﹣+3.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,OC平分∠AOB,P在OC上,PD⊥OA于D,PE⊥OB于E.若PD=3cm,则PE=_____cm.
20、(4分)已知一组数据6,6,1,x,1,请你给正整数x一个值_____,使这组数据的众数为6,中位数为1.
21、(4分)分式方程的解是_____.
22、(4分)同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,则它们另一个交点为坐标为_____.
23、(4分)计算=________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.
如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;
在的前提下,求EF的最小值和此时的面积;
当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.
25、(10分)如图,在每个小正方形的边长都是的正方形网格中,的三个顶点都在小正方形的格点上.将绕点旋转得到(点、分别与点、对应),连接,.
(1)请直接在网格中补全图形;
(2)四边形的周长是________________(长度单位)
(3)直接写出四边形是何种特殊的四边形.
26、(12分)如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证:AB∥ED.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据勾股定理计算即可.
【详解】
由勾股定理得,其斜边长=,
故选B.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
2、C
【解析】
首先找到当y>0时,图象所在位置,再根据图象可直接得到答案.
【详解】
当y>0时,图象在x轴上方,
∵与x交于(-1,0),
∴y>0时,自变量x的取值范围是x>-1,
故选:C.
考查了一次函数与一元一次不等式,关键是能从图象中找到对应的直线.
3、B
【解析】
解:数据1出现了两次,次数最多,所以这组数据的众数是1.故选B.
4、B
【解析】
直接根据根与系数的关系求解.
【详解】
解:根据题意,得x1+x2=-1.
故选:B.
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.
5、A
【解析】
结合表格中的数据,根据众数和中位数的定义即可求解.
【详解】
∵1岁的有7人,最多,
∴众数为:1,
中位数为:(1+1)÷2=1.
故选A.
本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6、A
【解析】
直接平行四边形邻角互补利得出∠ADC的度数,再利用角的和差得出答案.
【详解】
解:∵▱ABCD中,AB∥CD,
∴∠BAD+∠ADC=180°,
∵∠BAD=100°,
∴∠ADC=80°,
∵∠ADB=30°,
∴∠BDC=∠ADC-∠ADB=50°,
故选A.
本题主要考查了平行四边形的性质和平行线的性质,关键是求出∠ADC的度数.
7、D
【解析】
根据将所有数据加在一起除以数据的个数就能得到该组数据的平均数;排序后找到中间两数的平均数即为该组数据的中位数;观察后找到出现次数最多的数即为该组数据的众数,即可求出答案.
【详解】
该组数据的平均数为:a=(150+140+100+110+130+110+120)÷7=122.86,
将该组数据排序为:100,110,110,120,130,140,150,
该组数据的中位数为:b=120;
该组数据中数字110出现了2次,最多,
该组数据的众数为:c=110;
则a>b>c;
故选D.
本题考查众数、算术平均数和中位数,解题的关键是掌握众数、算术平均数和中位数的求解方法.
8、A
【解析】
因为平行四边形的对角相等,所以∠A=∠C =40°,
故选A
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2.5
【解析】
根据题意,求小桐的三项成绩的加权平均数即可.
【详解】
95×20%+90×30%+1×50%=2.5(分),
答:小桐这学期的体育成绩是2.5分.
故答案是:2.5
本题主要考查加权平均数,掌握加权平均数的意义,是解题的关键.
10、
【解析】
根据即可列式求解.
【详解】
如图,∵
∴
∴点在上,
∴,
故.
此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、三角形的面积公式.
11、(2,5)
【解析】
∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度,
∵图形可知点A的坐标为(-2,6),
∴则平移后的点A1坐标为(2,5).
12、
【解析】
由菱形的性质得出,,,由勾股定理和良宵美景得出OA2+OB2=16①,2OB×OB=15②,①+②得:(OA+OB)2=31,即可得出结果.
【详解】
解:四边形是菱形,
,,,
,菱形的面积为15,
①,,
②,
①②得:,
,
;
故答案为:.
本题考查了菱形的性质、勾股定理、完全平方公式;熟练掌握菱形的性质是解题的关键.
13、105
【解析】
根据三角板上的特殊角度,外角与内角的关系解答.
【详解】
根据三角板角度的特殊性可知∠AEB=45°,∠B=60°,
∵∠α是△BDE的外角,
∴∠α=∠AEB+∠B=45°+60°=105°
故答案为:105.
此题考查三角形的外角性质,解题关键在于掌握其性质定义和三角板的特殊角.
三、解答题(本大题共5个小题,共48分)
14、,3
【解析】
可先对括号内,进行化简约分,对括号外除法化乘法,然后对括号内同分母分式加法进行计算,最后进行约分即可得到化简之后的结果,将a=-2代入化简之后的结果进行计算.
【详解】
原式=
当a=-2,原式=3
本题考查分式的化简求值,对于分式的化简在运算过程中要根据运算法则注意运算顺序,在化简过程中可先分别对分母分子因式分解,再进行约分计算.
15、 (1) x=5,y=7;(1)1.
【解析】
试题分析:(1)根据加权平均数的计算方法列式求出x、y的关系式,再根据x、y都是整数进行求解即可;
(1)先根据众数与中位数的概念确定出a、b的值,再代入代数式进行二次根式的化简即可求解.
试题解析:解:(1)平均数==81,整理得,8x+9y=103,∵x、y都是整数,∴x=5,y=7;
(1)∵90分的有7人,最多,∴众数a=90,按照成绩从低到高,第十个同学的成绩是80分,第十一个同学的成绩是80分,(80+80)÷1=80,∴中位数b=80,∴===1.
点睛:本题考查了加权平均数,众数与中位数的概念,本题根据x、y都是整数并求出其值是解题的关键.
16、(1);(2),证明见解析;(3) .
【解析】
(1)根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出,然后利用SAS即可证出,最后利用对顶角相等和三角形的内角和定理即可求出结论;
(2)根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出,然后利用SAS即可证出,最后利用对顶角相等和三角形的内角和定理即可求出结论;
(3)设EC和FO交于点G,根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出、∠DCG=45°、∠BEC=30°,然后利用SAS即可证出,从而可求∠FGC=90°,然后根据等腰直角三角形的性质、勾股定理和30°所对的直角边是斜边的一半即可得出结论.
【详解】
解:(1) ∵是等边三角形,
∴,.
∵线段绕点顺时针旋转60°得到线段,
∴,°.
∴,
即.
在和中
∴.
∴.
又,,.
∴.
(2).
证明:如图②,是等边三角形,
∴,.
∵线段绕点顺时针旋转60°得到线段,
∴,°.
∴,
即.
在和中
∴.
∴.
又,,.
∴.
(3)设EC和FO交于点G
∵是等边三角形,
∴,.
∵线段绕点顺时针旋转60°得到线段,
∴,°.
∴,
即.
∴∠DCG=∠ECF-∠DCF=45°
∵
∴∠BEC=180°-∠ABC-∠BCE=30°
在和中
∴.
∴=30°
∴∠FGC=180°-∠F-∠ECF=90°
∴△CGD为等腰直角三角形,CG= DG
∴CG 2+DG2=CD2
即2CG2=62
解得:CG= DG=
在Rt△FGC中,FC=2CG =,FG=
∴DF=FG-DG=-
此题考查的是等边三角形的性质、旋转的性质、全等三角形的判定及性质和直角三角形的性质,掌握等边三角形的性质、旋转的性质、全等三角形的判定及性质、勾股定理和30°所对的直角边是斜边的一半是解决此题的关键.
17、△BEF是直角三角形,理由见解析
【解析】
因为正方形的四条边相等,边长为12,由E为DC的中点,得出DE和EC的长,AF=3DF,得出AF和DF的长,从而在Rt△ABF中、Rt△BCE中和Rt△DEF中,分别由勾股定理求得BF、BE和EF的长,得到BE2+EF2=BF2,再由勾股定理逆定理证得△BEF是直角三角形.
【详解】
解:△BEF是直角三角形,理由如下:
∵四边形ABCD是正方形,
∴∠A=∠C=∠D=20°
∵点E是CD的中点,
∴DE=CE=CD=1.
∵AF=3DF,
∴DF=AD=3
∴AF=3DF=2.
在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,
在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+31=180,
在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=2+31=45,
∵BE2+EF2=180+45=225,BF2=225,
∴BE2+EF2=BF2
∴△BEF是直角三角形.
此题主要考查直角三角形的判定,解题的关键是熟知勾股定理的逆定理.
18、2
【解析】
把同类二次根式分别合并即可.
【详解】
6﹣5﹣+3
=(6﹣5)+(﹣1+3)
=+2.
考查二次根式的加减法,二次根式加减法一般过程为:先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
根据角平分线上的点到角的两边的距离相等求解即可.
【详解】
解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,
∴PE=PD=3cm.
故答案为;3
本题主要考查了角平分线的定义,角平分线上的点到角的两边的距离相等,熟记性质是解题的关键.
20、2
【解析】
由数据1、1、6、6、x的众数为6、中位数为1知x<1且x≠1,据此可得正整数x的值.
【详解】
∵数据1、1、6、6、x的众数为6、中位数为1,
∴x<1且x≠1,
则x可取2、3、4均可,
故答案为2.
考查了中位数、众数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
21、
【解析】
两边都乘以x(x-1),化为整式方程求解,然后检验.
【详解】
原式通分得:
去分母得:
去括号解得,
经检验,为原分式方程的解
故答案为
本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
22、
【解析】
反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.
【详解】
解:∵同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,
∴另一交点的坐标是(-3,1).
故答案是:(-3,1).
本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.
23、
【解析】
直接利用二次根式的乘法运算法则计算得出答案.
【详解】
原式=,
故答案为:.
本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.
二、解答题(本大题共3个小题,共30分)
24、,证明见解析;的最小值是,;如图3,当点E运动到DC边上时,大小不发生变化,理由见解析.
【解析】
先证明和是等边三角形,再证明≌,可得结论;
由≌,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;
同理得:≌,则可得,所以,则A、B、M、D四点共圆,可得.
【详解】
,
证明:、F的速度相同,且同时运动,
,
又四边形ABCD是菱形,
,
,
,
是等边三角形,
同理也是等边三角形,
,
在和中,
,
≌,
;
由得:≌,
,
,
,
是等边三角形,
,
如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,
,,
,
的最小值是,
中,,,
,
,
;
如图3,当点E运动到DC边上时,大小不发生变化,
在和中,
,
≌,
,
,
,
,
,
,
、B、M、D四点共圆,
.
此题是四边形的综合题,考查了菱形的性质、等边三角形的判定与性质、四点共圆的判定和性质、垂线段最短以及全等三角形的判定与性质注意证得≌是解此题的关键.
25、(1)见解析;(2);(3)正方形,见解析
【解析】
(1)根据中心对称的特点得到点A1、C1,顺次连线即可得到图形;
(2)根据图形分别求出AC、、、的长即可得到答案;
(3)求出AB、AC、BC的长度,根据勾股定理逆定理及中心对称图形得到四边形是正方形,即可求出答案.
【详解】
(1)如图,
(2)∵,,, ,
∴四边形的周长=AC+++=,
故答案为:;
(3)由题意得: ,,,
∴AB=BC, ,
∴△ABC是等腰直角三角形,
由(2)得,
∴四边形是菱形,
由中心对称得到,,,
∴是等腰直角三角形,
∴,
∴,
∴四边形是正方形.
此题考查中心对称图形的作图能力,勾股定理计算网格中线段长度,等腰直角三角形的判定定理及性质定理,勾股定理的逆定理,正方形的判定定理.
26、详见解析
【解析】
由AC=CD,∠ACB=∠DCE=90°,根据HL证出Rt△ACB≌Rt△DCE,推出∠A=∠D即可.
【详解】
∵点C为AD的中点,
∴AC=CD,
∵BE⊥AD,
∴∠ACB=∠DCE=90°,
在Rt△ACB和Rt△DCE中,,
∴Rt△ACB≌Rt△DCE(HL),
∴∠A=∠D,
∴AB∥ED.
考点:全等三角形的判定与性质
题号
一
二
三
四
五
总分
得分
年龄(单位:岁)
14
15
16
17
18
人数
3
7
3
4
1
成绩(分)
60
70
80
90
100
人数(人)
1
5
x
y
2
湖南省长沙市湘一立信实验学校2024年九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份湖南省长沙市湘一立信实验学校2024年九年级数学第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届湖南省长沙市长雅中学九上数学开学达标检测模拟试题【含答案】: 这是一份2025届湖南省长沙市长雅中学九上数学开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖南省长沙市青竹湖湘一外国语学校数学九上开学达标检测试题【含答案】: 这是一份2024年湖南省长沙市青竹湖湘一外国语学校数学九上开学达标检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。