搜索
    上传资料 赚现金
    英语朗读宝

    湖南省长沙市长沙明德中学2025届九年级数学第一学期开学联考模拟试题【含答案】

    湖南省长沙市长沙明德中学2025届九年级数学第一学期开学联考模拟试题【含答案】第1页
    湖南省长沙市长沙明德中学2025届九年级数学第一学期开学联考模拟试题【含答案】第2页
    湖南省长沙市长沙明德中学2025届九年级数学第一学期开学联考模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省长沙市长沙明德中学2025届九年级数学第一学期开学联考模拟试题【含答案】

    展开

    这是一份湖南省长沙市长沙明德中学2025届九年级数学第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是( )
    A.平均数B.中位数
    C.众数D.方差
    2、(4分)如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
    下面有三个推断:
    ①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
    ②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
    ③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.
    其中合理的是( )
    A.①B.②C.①②D.①③
    3、(4分)若二次根式有意义,则x的取值范围是( )
    A.x>B.x≥C.x≤D.x≤5
    4、(4分)如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是( )
    A.B.C.D.
    5、(4分)下面计算正确的是( )
    A.B.C.D.
    6、(4分)小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是
    A.他离家8km共用了30minB.他等公交车时间为6min
    C.他步行的速度是100m/minD.公交车的速度是350m/min
    7、(4分)如图,在中,,,,则( )
    A.3B.C.D.6
    8、(4分)下列各组数中,能构成直角三角形的是( )
    A.4,5,6B.1,1,C.6,8,11D.5,12,23
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,函数与的图象交于点,那么不等式的解集是______.
    10、(4分)函数y=36x-10的图象经过第______象限.
    11、(4分)如图,是互相垂直的小路,它们用连接,则_______.
    12、(4分)如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.
    13、(4分)若,是一元二次方程的两个根,则______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)随着生活水平的不断提高,越来越多的人选择到电影院观看电影,体验视觉盛宴,并且更多的人通过网上平台购票,既快捷又能享受更多优惠.某电影城2019年从网上购买张电影票的费用比现场购买张电影票的费用少元:从网上购买张电影票的费用和现场购买张电影票的费用共元.
    (1)求该电影城2019年在网上购票和现场购票每张电影票的价格为多少元?
    (2)2019年五一当天,该电影城按照2019年网上购票和现场购票的价格销售电影票,当天售出的总票数为张.五一假期过后,观影人数出现下降,于是电影城决定从5月5日开始调整票价:现场购票价格下调,网上购票价格不变,结果发现,现场购票每张电影票的价格每降低元,售出总票数就比五一当天增加张.经统计,5月5日售出的总票数中有的电影票通过网上售出,其余通过现场售出,且当天票房总收入为元,试求出5月5日当天现场购票每张电影票的价格为多少元?
    15、(8分)地铁检票处有三个进站闸口A、B、C.
    ①人选择A进站闸口通过的概率是________;
    ②两个人选择不同进站闸口通过的概率.(用树状图或列表法求解)
    16、(8分)如图,正方形ABCD中,O是对角线AC、BD的交点,过点O作OE⊥OF,分别交AB、BC于E. F.
    (1)求证:△OEF是等腰直角三角形。
    (2)若AE=4,CF=3,求EF的长。
    17、(10分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
    (1)参加比赛有_____名运动员,图①中a的值是_____,补全条形统计图.
    (2)统计的这组初赛成绩数据的众数是_____,中位数是_____,平均数是_____.
    (3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
    18、(10分)已知:如图,是的角平分线,于点 ,于点,,求证:是的中垂线.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.
    20、(4分)若m=+5,则mn=___.
    21、(4分)如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是______平方米.
    22、(4分)若关于的两个方程与有一个解相同,则__________.
    23、(4分)直角中,,、、分别为、、的中点,已知,则________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,一次函数的图像经过点A(-1,0),并与反比例函数()的图像交于B(m,4)
    (1)求的值;
    (2)以AB为一边,在AB的左侧作正方形,求C点坐标;
    (3)将正方形沿着轴的正方向,向右平移n个单位长度,得到正方形,线段的中点为点,若点和点同时落在反比例函数的图像上,求n的值.
    25、(10分)先化简,再求值:,其中x=20160+4
    26、(12分)如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.
    (1)求直线AD及抛物线的解析式;
    (2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?
    (3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    分析:一组数据中出现次数最多的一个数是这组数据的众数,班长最关心吃哪种水果的人最多,即这组数据的众数.
    详解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.
    故选C.
    点睛:此题主要考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    2、B
    【解析】
    随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.
    【详解】
    解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;
    ②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;
    ③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.1,故错误.
    故选:B.
    本题考查了利用频率估计概率,明确概率的定义是解题的关键.
    3、B
    【解析】
    根据二次根式有意义的条件列出不等式,解不等式即可.
    【详解】
    解:由题意得,5x﹣1≥0,
    解得,x≥,
    故选B.
    本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.
    4、B
    【解析】
    根据等腰三角形的性质得到根据垂直的性质得到
    根据等量代换得到又即可得到
    根据同角的余角相等即可得到.
    【详解】
    ,

    ,

    从而
    是等腰三角形,



    故选:B.
    考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.
    5、B
    【解析】
    分析:A.根据合并二次根式的法则即可判定;
    B.根据二次根式的除法法则即可判定;
    C.根据二次根式的乘法法则即可判定;
    D.根据二次根式的性质即可判定.
    详解:A.不是同类二次根式,不能合并.故选项错误;
    B.÷==1.故选项正确;
    C..故选项错误;
    D.=2. 故选项错误.
    故选B.
    点睛:本题考查了二次根式的计算,要掌握各运算法则.二次根式的加减运算,只有同类二次根式才能合并;乘法法则;除法法则.
    6、D
    【解析】
    A、依题意得他离家8km共用了30min,故选项正确;
    B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故选项正确;
    C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故选项正确;
    D、公交车(30-16)min走了(8-1)km,故公交车的速度为7000÷14=500m/min,故选项错误.
    故选D.
    7、A
    【解析】
    根据直角三角形的性质:30度的锐角所对的直角边等于斜边的一半即可求解.
    【详解】
    解:∵在△ABC中,∠C=90°,∠A=30°,
    ∴BC= AB= ×6=3,
    故选:A.
    本题考查了含30度的直角三角形的性质,正确掌握定理是解题的关键.
    8、B
    【解析】
    根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
    【详解】
    解:A、,故不是直角三角形,错误;
    B、 ,故是直角三角形,正确;
    C、 故不是直角三角形,错误;
    D、故不是直角三角形,错误.
    故选:B.
    本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    函数与的图象的交点由图象可直接得到答案,以交点为分界,交点左边,结合图象可得答案.
    【详解】
    解:由图象可得:函数与的图象交于点,
    关于x的不等式的解集是.
    故答案为:.
    此题主要考查了一次函数与一元一次不等式的关系,关键是正确从图象中得到信息,掌握数形结合思想的应用.
    10、【解析】
    根据y=kx+b(k≠0,且k,b为常数),当k>0,b<0时,函数图象过一、三、四象限.
    【详解】
    解:因为函数中,
    ,,
    所以函数图象过一、三、四象限,
    故答案为:一、三、四.
    此题主要考查了一次函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.
    11、450°
    【解析】
    如图,作出六边形,根据“n边形的内角和是(n-2)•180°”求出内角和,再求∠的度数.
    【详解】
    解:过点A作AB的垂线,过点E作DE的垂线,两线相交于点Q,
    则∠BAQ=∠DEQ=90°,
    ∵DE⊥AB,QA⊥AB,
    ∴DE∥QA,
    ∴∠AQE=180°-∠DEQ=90°,
    ∵六边形ABCDEQ的内角和为:(6-2)•180°=720°,
    ∴=720°-90°×3=450°.
    故答案为:450°.
    本题主要考查了多边形的内角和定理.解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.
    12、1
    【解析】
    过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值
    【详解】
    解:
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    过点A作AE⊥BC于E,
    ∴当AE∥QP时,则四边形ABPQ是直角梯形,
    ∵∠B=60°,AB=8cm,
    ∴BE=4cm,
    ∵P,Q运动的速度都为每秒1cm,
    ∴AQ=10﹣t,AP=t,
    ∵BE=4,
    ∴EP=t﹣4,
    ∵AE⊥BC,AQ∥EP,AE∥QP,
    ∴QP⊥BC,AQ⊥AD,
    ∴四边形AEPQ是矩形,
    ∴AQ=EP,
    即10﹣t=t﹣4,
    解得t=1,
    故答案为:1.
    此题考查直角梯形,平行四边形的性质,解题关键在于作辅助线
    13、3
    【解析】
    利用根与系数的关系可得两根之和与两根之积,再整体代入通分后的式子计算即可.
    【详解】
    解:∵,是一元二次方程的两个根,∴,
    ∴.
    故答案为:3.
    本题考查的是一元二次方程根与系数的关系,熟练掌握基本知识是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)网上购票价格30元,现场购票价格50元;(2)5月5日当天现场购票每张电影票的价格为40元,见解析.
    【解析】
    (1)首先设网上每张电影票价格为元,现场每张电影票价格为元,然后根据题意,列出关系式,即可得解;
    (2)首先设现场购票每张电影票的价格下降元,然后根据题意列出关系式,即可得解.
    【详解】
    (1)设网上每张电影票价格为元,现场每张电影票价格为元.
    解得:
    答:网上购票价格30元,现场购票价格50元.
    (2)设现场购票每张电影票的价格下降元
    解得(舍去),
    答:5月5日当天现场购票每张电影票的价格为40元.
    此题主要考查二元一次方程组、一元一次方程的实际应用,关键是根据题意列出关系式,即可解题.
    15、(1);(2)
    【解析】
    (1)直接利用概率公式计算可得;
    (2)画树状图展示所有9种等可能的结果数,再找出选择不同通道通过的结果数,然后根据概率公式求解.
    【详解】
    解:(1)选择A通道通过的概率是;
    故答案为:
    (2)画树形图如下;
    由图中可知,共有9种等可能情况,其中选择不同通道通过的有6种结果,
    所以选择不同通道通过的概率为
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    16、(1)见解析;(2)5.
    【解析】
    (1)根据正方形的性质可得∠ABO=∠ACF=45°,OB=OC,∠BOC=90°,再根据同角的余角相等求出∠EOB=∠FOC,然后利用“角边角”证明△BEO和△CFO全等,根据全等三角形对应边相等可得OE=OF,从而得证;
    (2)根据全等三角形对应边相等可得BE=CF,再根据正方形的四条边都相等求出AE=BF,再利用勾股定理列式进行计算即可得解.
    【详解】
    (1)证明:∵四边形ABCD为正方形,
    ∴∠ABO=∠ACF=45∘,OB=OC,∠BOC=90∘,
    ∴∠FOC+∠BOF=90∘,
    又∵OE⊥OF,
    ∴∠EOF=90∘,
    ∴∠EOB+∠BOF=90∘,
    ∴∠EOB=∠FOC,
    在△BEO和△CFO中,

    ∴△BEO≌△CFO(ASA),
    ∴OE=OF,
    又∵∠EOF=90∘,
    ∴△DEF是等腰直角三角形;
    (2)解∵△BEO≌△CFO(已证),
    ∴BE=CF=3,
    又∵四边形ABCD是正方形,
    ∴AB=BC,
    ∴AB−BE=BC−CF,
    即AE=BF=4,
    在Rt△BEF中,EF= = =5.
    此题考查全等三角形的判定与性质,正方形的性质,解题关键在于得到∠ABO=∠ACF=45°,OB=OC,∠BOC=90°
    17、(1)20,25,图详见解析;(2)众数:1.65m,中位数1.60m,平均数1.61m;(3)能.
    【解析】
    (1) 用整体1减去其他百分比,即可求出a的值,用已知人数除以所占百分比即可求解.
    (2) 根据平均数,众数和中位数的定义分别进行求解.
    (3) 根据中位数的意义可直接判断出能否进入复赛.
    【详解】
    (1),
    (2)平均数;在这组数据样本中,1.65出现了6次,出现次数最多,故众数为1.65;将这组样本数据从小到大的顺序排列,其中处于中间的两个数都为1.60,所以中位数为.
    (3)能.
    本题主要考查数据的处理、数据的分析以及统计图表,熟悉掌握是关键.
    18、见解析.
    【解析】
    由AD是△ABC的角平分线,DE⊥AB,DF⊥AC,根据角平分线的性质,可得DE=DF,∠BED=∠CFD=90°,继而证得Rt△BED≌Rt△CFD,则可得∠B=∠C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.
    【详解】
    解:是的角平分线,,,
    ,,
    在和中,




    是的角平分线,
    是的中垂线.
    此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质.注意掌握三线合一性质的应用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    试题解析:连接EF,
    ∵OD=OC,
    ∵OE⊥OF
    ∴∠EOD+∠FOD=90°
    ∵正方形ABCD
    ∴∠COF+∠DOF=90°
    ∴∠EOD=∠FOC
    而∠ODE=∠OCF=41°
    ∴△OFC≌△OED,
    ∴OE=OF,CF=DE=3cm,则AE=DF=4,
    根据勾股定理得到EF==1cm.
    故答案为1.
    20、1.
    【解析】
    直接利用二次根式有意义的条件得出m,n的值进而得出答案.
    【详解】
    ∵m=+5,
    ∴n=2,则m=5,
    故mn=1.
    故答案为:1.
    此题主要考查了二次根式有意义的条件,正确得出m,n的值是解题关键.
    21、144米1.
    【解析】
    将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可.
    【详解】
    解:将道路分别向左、向上平移,得到草地为一个长方形,
    长方形的长为10-1=18(米),宽为10-1=8(米),
    则草地面积为18×8=144米1.
    故答案为:144米1.
    本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.
    22、1
    【解析】
    首先解出一元二次方程的解,根据两个方程的解相同,把x的值代入第二个方程中,解出a即可.
    【详解】
    解:解方程得x1=2,x2=−1,
    ∵x+1≠0,
    ∴x≠−1,
    把x=2代入中得:,
    解得:a=1,
    故答案为1.
    此题主要考查了解一元二次方程,以及解分式方程,关键是正确确定x的值,分式方程注意分母要有意义.
    23、3
    【解析】
    由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.
    【详解】
    ∵在直角△ABC中,∠BAC=90°,D. F分别为AB、AC的中点,
    ∴DF是△ABC的中位线,
    ∴DF=BC.
    又∵点E是直角△ABC斜边BC的中点,
    ∴AE=BC,
    ∵DF=3,
    ∴DF=AE=3.
    故答案为3.
    本题考查了三角形中位线定理和直角三角形斜边上的中线.熟记定理是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)k1=4;(2)C点坐标为(-3,6);(3)n=.
    【解析】
    (1)把A点坐标代入y=2x+b,可求出b值,把B(m,4)代入可求出m值,代入即可求出k1的值;(2)过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,利用AAS可证明△CBG≌△BAF,可得AF=BG,CG=BF,根据A、B两点坐标即可得C点坐标;(3)由A、B、C三点坐标可得向右平移n个单位后A1、B1、C1的坐标,即可得E点坐标,根据k2=xy列方程即可求出n值.
    【详解】
    (1)∵一次函数的图像经过点A(-1,0),
    ∴-2+b=0,
    解得:b=2,
    ∵点B(m,4)在一次函数y=2x+2上,
    ∴4=2m+2,
    解得:m=1,
    ∵B(1,4)在反比例函数图象上,
    ∴k1=4.
    (2)如图,过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,
    ∵A(-1,0),B(1,4),
    ∴AF=2,BF=4,
    ∴∠GCB+∠CBG=90°,
    ∵四边形ABCD是正方形,
    ∴∠ABC=90°,
    ∴∠ABF+∠CBG=90°,
    ∴∠GCB=∠ABF,
    又∵BC=AB,∠AFB=∠CGB=90°,
    ∴△CBG≌△BAF,
    ∴BG=AF=2,CG=BF=4,
    ∴GF=6,
    ∵在AB的左侧作正方形ABCD,
    ∴C点坐标为(-3,6).
    (3)∵正方形ABCD沿x轴的正方向,向右平移n个单位长度,
    ∴A1(-1+n,0),B1(1+n,4),C1(-3+n,6),
    ∵线段A1B1的中点为点E,
    ∴E(n,2),
    ∵点和点E同时落在反比例函数的图像上,
    ∴k2=2n=6(-3+n)
    解得:n=.
    本题考查一次函数与反比例函数综合,涉及的知识点有平移的性质、全等三角形的性质,一次函数和反比例函数图象上点的坐标特征及正方形的性质,熟练掌握性质和定理是解题关键.
    25、,.
    【解析】
    先算括号里面的,再算除法,最后求出x的值代入进行计算即可.
    【详解】
    解:原式,
    ∵x=20160+4=5,
    ∴原式=.
    本题考查的是分式的化简求值,熟练掌握运算法则是解题关键.
    26、(1)y=x2+2x﹣1;(2)当m=-时,PQ最长,最大值为;(1)R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
    【解析】
    (1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;
    (2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
    (1)根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案
    【详解】
    解:(1)将A(1,0),B(﹣1,0)代入y=ax2+bx﹣1得:
    解得:
    ∴抛物线的解析式为:y=x2+2x﹣1,
    当x=﹣2时,y=(﹣2)2﹣4﹣1=﹣1,
    ∴D(﹣2,﹣1),
    设直线AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣1)代入得:
    解得:
    ∴直线AD的解析式为y=x﹣1;
    因此直线AD的解析式为y=x﹣1,抛物线的解析式为:y=x2+2x﹣1.
    (2)∵点P在直线AD上,Q抛物线上,P(m,n),
    ∴n=m﹣1 Q(m,m2+2m﹣1)
    ∴PQ的长l=(m﹣1)﹣(m2+2m﹣1)=﹣m2﹣m+2 (﹣2≤m≤1)
    ∴当m= 时,PQ的长l最大=﹣( )2﹣()+2= .
    答:线段PQ的长度l与m的关系式为:l=﹣m2﹣m+2 (﹣2≤m≤1)
    当m=时,PQ最长,最大值为.
    (1)①若PQ为平行四边形的一边,则R一定在直线x=﹣2上,如图:
    ∵PQ的长为0<PQ≤的整数,
    ∴PQ=1或PQ=2,
    当PQ=1时,则DR=1,此时,在点D上方有R1(﹣2,﹣2),在点D下方有R2(﹣2,﹣4);
    当PQ=2时,则DR=2,此时,在点D上方有R1(﹣2,﹣1),在点D下方有R4(﹣2,﹣5);
    ②若PQ为平行四边形的一条对角线,则PQ与DR互相平分,此时R与点C重合,即R5(0,﹣1)
    综上所述,符合条件的点R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
    答:符合条件的点R共有5个,即:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
    此题考查一元二次方程-用待定系数法求解析式,二次函数的性质,平行四边形的性质,解题关键在于把已知点代入解析式
    题号





    总分
    得分
    批阅人

    相关试卷

    湖南省长沙市明德中学2025届数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份湖南省长沙市明德中学2025届数学九上开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省长沙市明德中学2024年数学九上开学质量跟踪监视试题【含答案】:

    这是一份湖南省长沙市明德中学2024年数学九上开学质量跟踪监视试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省长沙市明德天心中学2024-2025学年九上数学开学检测模拟试题【含答案】:

    这是一份湖南省长沙市明德天心中学2024-2025学年九上数学开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map