吉林省白城市名校2024年数学九上开学经典模拟试题【含答案】
展开
这是一份吉林省白城市名校2024年数学九上开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列二次根式中与是同类二次根式的是( )
A.B.C.D.
2、(4分)如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )
A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间
3、(4分)已知实数a,b,若a>b,则下列结论错误的是
A.a-7>b-7B.6+a>b+6C.D.-3a>-3b
4、(4分)定义,当时,,当<时,;已知函数,则该函数的最大值是( )
A.B.C.D.
5、(4分)如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是( )
A.BE=ECB.BC=EFC.AC=DFD.△ABC≌△DEF
6、(4分)如图中的数字都是按一定规律排列的,其中x的值是( )
A.179B.181C.199D.210
7、(4分)直角三角形两边分别为3和4,则这个直角三角形面积为( )
A.6B.12C.D.或6
8、(4分)如图,点 E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF; ③AF=CE;④∠AEB=∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )
A.①②③B.①②④C.①③④D.②③④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门不知其高、宽,有竿,不知其长、短,横放,竿比门宽长出尺;竖放,竿比门高长出尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为尺,则可列方程为__________.
10、(4分)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是______(填写所有正确结论的序号).
11、(4分)如图,在平行四边形纸片ABCD中,AB=3,将纸片沿对角线AC对折,BC边与AD边交于点E,此时,△CDE恰为等边三角形,则图中重叠部分的面积为_____.
12、(4分)在中,若,则_____________
13、(4分)直角中,,、、分别为、、的中点,已知,则________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)计算
(2)解不等式组,并写出不等式组的非负整数解。
(3)解分式方程:
15、(8分)如图,分别以的边向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,
求证:(1);
(2).
16、(8分)计算:(+2)(-2)+
17、(10分)如图,在▱ABCD中,点E是CD的中点,连接BE并延长交AD延长线于点F.
(1)求证:点D是AF的中点;
(2)若AB=2BC,连接AE,试判断AE与BF的位置关系,并说明理由.
18、(10分)如图,在中,,从点为圆心,长为半径画弧交线段于点,以点为圆心长为半径画弧交线段于点,连结.
(1)若,求的度数:
(2)设.
①请用含的代数式表示与的长;
②与的长能同时是方程的根吗?说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.
20、(4分)如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是_____.
21、(4分)汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为_____(注明s的取值范围).
22、(4分)某商品经过连续两次降价,售价由原来的25元/件降到16元/件,则平均每次降价的百分率为_____.
23、(4分)在平面直角坐标系xOy中,第三象限内有一点A,点A的横坐标为﹣2,过A分别作x轴、y轴的垂线,垂足为M、N,矩形OMAN的面积为6,则直线MN的解析式为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:直线y=与x轴、y轴分别相交于点A和点B,点C在线段AO上.将△CBO沿BC折叠后,点O恰好落在AB边上点D处.
(1)直接写出点A、点B的坐标:
(2)求AC的长;
(3)点P为平面内一动点,且满足以A、B、C、P为顶点的四边形为平行四边形,请直接回答:
①符合要求的P点有几个?
②写出一个符合要求的P点坐标.
25、(10分)如图所示,在中,点在上,于,且平分,.
求证:.
26、(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先将各选项化简,再根据同类二次根式的定义解答.
【详解】
A、,与被开方数不相同,故不是同类二次根式,选项错误;
B、,与被开方数相同,故是同类二次根式,选项正确;
C、,与被开方数不同,故不是同类二次根式,选项错误;
D、是整数,不是二次根式,故选项错误.
所以B选项是正确的.
本题主要考查同类二次根式的定义,正确对根式进行化简,以及正确理解同类二次根式的定义是解决问题的关键.
2、A
【解析】
由P点坐标利用勾股定理求出OP的长,再根据已知判定A点的位置求解即可.
【详解】
因为点坐标为,所以,故.因为,,,即,点在x轴的负半轴,所以点的横坐标介于﹣4和﹣3之间.
故选A.
本题主要考查平面直角坐标系的有关概念和圆的基本概念.
3、D
【解析】
A.∵a>b,∴a-7>b-7,∴选项A正确;
B.∵a>b,∴6+a>b+6,∴选项B正确;
C.∵a>b,∴,∴选项C正确;
D.∵a>b,∴-3a<-3b,∴选项D错误.
故选D.
4、B
【解析】
根据直线y=x-3和直线y=2x+3,知它们的交点的坐标为(-6,-1),再根据新定义讨论:x≤-6,y=2x+3,利用一次函数的性质得到y有最大值-1;x>-6时,y=x-3,则x=-6时,利用一次函数的性质得到y有最大值-1;
【详解】
解:当x-3≥2x+3,解得x≤-6时,
y=min(x-3,2x+3)=2x+3,则x=-6时,y有最大值-1;
当x-3-6时,
y=min(x-3,2x+3)=x-3,则x=-6时,y有最大值-1;
所以该函数的最大值是-1.
故选:B.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
5、A
【解析】
平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF,再根据性质得到相应结论.
【详解】
解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF
∴Rt△ABC≌Rt△DEF
∴BC=EF,AC=DF
所以只有选项A是错误的,故选A.
本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.
6、B
【解析】
根据已知图形得出m+1=n且m+n=19,求得m、n的值,再根据x=19n﹣m可得答案.
【详解】
.解:由题意知,m+1=n且m+n=19,
则m=9、n=10,
∴x=19×10﹣9=181,
故选:B.
本题主要考查图形及数的变化规律,解题的关键是通过观察图形分析总结出规律,再按规律求解.
7、D
【解析】
此题要考虑全面,一种是3,4为直角边;一种是4是斜边,分情况讨论即可求解.
【详解】
当3和4是直角边时,面积为;当4是斜边时,另一条直角边是,面积为,故D选项正确.
此题主要考查勾股定理和三角形面积的计算,注意要分情况讨论.
8、D
【解析】
分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.
详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;
添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE ∥BF,∴DEBF是平行四边形,故②正确;
添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF ∥BE,∴DEBF是平行四边形,故③正确;
添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF ∥BE,∴DEBF是平行四边形,故④正确.
综上所述:可添加的条件是:②③④.
故选D.
点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.
【详解】
解:根据勾股定理可得:
,即x2-8x+16+x2-4x+4= x2,
解得:x1=2(不合题意舍去),x2=10,
10-2=8(尺),
10-4=6(尺).
答:门高8尺,门宽6尺,对角线长10尺.
故答案为: .
本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解题的关键.
10、②③④.
【解析】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;
②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;
③∵(240+200﹣60)÷(60+80)=(h),∴乙车出发h时,两车相遇,结论③正确;
④∵80×(4﹣3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.
综上所述,正确的结论有:②③④.
故答案为:②③④.
点睛:本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.
11、.
【解析】
根据翻折的性质,及已知的角度,可得△AEB’为等边三角形,再由四边形ABCD为平行四边形,且∠B=60°,从而知道B’,A,B三点在同一条直线上,再由AC是对称轴,所以AC垂直且平分BB’,AB=AB’=AE=3,求AE边上的高,从而得到面积.
【详解】
解:∵△CDE恰为等边三角形,
∴∠AEB’=∠DEC=60°,∠D=∠B=∠B’=60°,
∴△AEB’为等边三角形,
由四边形ABCD为平行四边形,且∠B=60°,
∴∠BAD=120°,所以所以∠B’AE+∠DAB=180°,
∴B’,A,B三点在同一条直线上,
∴AC是对折线,
∴AC垂直且平分BB’,
∴AB=AB’=AE=3,AE边上的高,h=CD×sin60°=,
∴面积为.
本题有一个难点,题目并没有说明B’,A,B三点在同一条直线上,虽然图形是一条直线,易当作已知条件,这一点需注意.
12、;
【解析】
根据在直角三角形中,角所对的边是斜边的一半,即可的BC的长.
【详解】
根据题意中,若
所以可得BC=
故答案为1
本题主要考查在直角三角形中,角所对的边是斜边的一半,这是一个重要的直角三角形的性质,应当熟练掌握.
13、3
【解析】
由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.
【详解】
∵在直角△ABC中,∠BAC=90°,D. F分别为AB、AC的中点,
∴DF是△ABC的中位线,
∴DF=BC.
又∵点E是直角△ABC斜边BC的中点,
∴AE=BC,
∵DF=3,
∴DF=AE=3.
故答案为3.
本题考查了三角形中位线定理和直角三角形斜边上的中线.熟记定理是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、①+2;②0、1;③原方程无解.
【解析】
(1)首先计算负指数次幂,0次幂,二次根式的混合运算,去掉绝对值符号,化简二次根式,然后合并同类二次根式即可求解;(2)首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.(3)中因为x2-4=(x+2)(x-2),所以最简公分母为(x+2)(x-2),确定方程的最简公分母后,方程两边乘最简公分母,把分式方程转化为整式方程求解. .
【详解】
解(1)原式=3-1-(1-)+-1
=3-1-1++2-1
=+2
(2)
解不等式①得,x≤1,
解不等式②得,x<4,
所以不等式组的解集是x≤1,
所以不等式组的非负整数解是0、1.
故答案为:0、1.
(3)方程两边同乘(x+2)(x-2),
得:(x-2)2=(x+2)2+16,
整理解得x=-2.
经检验x=-2是增根,
故原方程无解.
(1)本题考查实数的混合运算、解不等式组和解分式方程;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,去分母时要注意符号的变化.
15、(1)证明见详解;(2)证明见详解.
【解析】
(1)如图,延长AO到M,使OM=AO,连接GM,延长OA交BC于点H.根据全等三角形的性质得到AE=MG,∠MGO=∠AEO,根据三角形的内角和得到∠MGA+∠GAE=180°,根据正方形的性质得到AG=AB,AE=AC,∠BAG=∠CAE=90°,根据全等三角形的性质得到AM=BC,等量代换即可得到结论;
(2)根据全等三角形的性质得到∠M=∠EAO,∠M=∠ACB,等量代换得到∠EAO=∠ACB,求得∠AHC=90°,根据垂直的定义即可得到结论.
【详解】
解:(1)如图,延长AO到M,使OM=AO,连接GM,延长OA交BC于点H.
∵O为EG的中点,
∴OG=OE,
在△AOE与△MOG中,,
∴△AOE≌△MOG(SAS),
∴AE=MG,∠MGO=∠AEO,
∴∠MGA+∠GAE=180°,
∵四边形ABFG和四边形ACDE是正方形,
∴AG=AB,AE=AC,∠BAG=∠CAE=90°,
∴AC=GM,∠GAE+∠BAC=180°,
∴∠BAC=∠AGM,
在△AGM与△ABC中,,
∴△AGM≌△ABC(SAS),
∴AM=BC,
∵AM=2AO,
∴;
(2)由(1)知,△AOE≌△MOG,△AGM≌△ABC,
∴∠M=∠EAO,∠M=∠ACB,
∴∠EAO=∠ACB,
∵∠CAE=90°,
∴∠OAE=∠CAH=90°,
∴∠ACB+∠CAH=90°,
∴∠AHC=90°,
∴AH⊥BC.
即.
本题考查了正方形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.
16、1
【解析】
直接利用平方差公式以及完全平方公式分别化简得出答案.
【详解】
解:原式=3-4+2=1.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
17、(1)见解析;(2)AE⊥BF,理由见解析.
【解析】
(1)根据平行四边形的性质可得AD∥BC,AD=BC,然后利用AAS即可证出BC=DF,从而得出AD=DF,即可证出结论;
(2)根据全等三角形的性质可得BE=EF,然后证出AB=AF,利用三线合一即可得出结论.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠CBE=∠F,
∵点E为CD的中点,
∴CE=DE,
在△BCE和△FDE中,
,
∴△BCE≌△FDE(AAS),
∴BC=DF,
∴AD=DF,
即点D是AF的中点;
(2)∵△BCE≌△FDE,
∴BE=EF,
∵AB=2BC,BC=AD,AD=DF,
∴AB=AF,
∴AE⊥BF.
此题考查的是平行四边形的性质、全等三角形的判定及性质和等腰三角形的性质,掌握平行四边形的性质、全等三角形的判定及性质和三线合一是解决此题的关键.
18、(1);(2)①,;②是,理由见解析
【解析】
(1)根据直角三角形、等腰三角形的性质,判断出△DBC是等边三角形,即可得到结论;
(2)①根据线段的和差即可得到结论;
②根据方程的解得定义,判断AD是方程的解,则当AD=BE时,同时是方程的解,即可得到结论.
【详解】
解:(1)∵,
,
又,
是等边三角形.
.
(2)①∵
又,
.
②∵
∴线段的长是方程的一个根.
若与的长同时是方程的根,则,
即,
,
,
∴当时,与的长同时是方程的根.
本题考查了勾股定理,一元二次方程的解;熟练掌握直角三角形和等腰三角形的性质求边与角的方法,掌握判断一元二次方程的解得方法是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3或1.
【解析】
由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是 D,A,C在同一条直线上,可分别求出CP的长度.
【详解】
解:∵AC=BC=10,
∴∠CAB=∠CBA,
由旋转的性质知,△ACB≌△AED,
∴AE=AC=10,∠CAB=∠EAD=∠CBA,
①∵∠DAF=∠CBA,
∴∠DAF=∠EAD,
∴A,F,E三点在同一直线上,如图1所示,
过点C作CH⊥AB于H,
则AH=BH=AB=7,
∵EP⊥AC,
∴∠EPA=∠CHA=90°,
又∵∠CAH=∠EAP,CA=EA,
∴△CAH≌△EAP(AAS),
∴AP=AH=7,
∴PC=AC-AP=10-7=3;
②当D,A,C在同一条直线上时,如图2,
∠DAF=∠CAB=∠CBA,
此时AP=AD=AB=7,
∴PC=AC+AP=10+7=1.
故答案为:3或1.
本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.
20、
【解析】
把此正方体的一面展开,然后在平面内,利用勾股定理求点A和点B间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.
【详解】
解:∵展开后由勾股定理得:AB2=12+(1+1)2=5,
∴AB=.
故答案为
本题考查了平面展开﹣最短路径问题,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.
21、Q=52﹣8s(0≤s≤6).
【解析】
求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s,根据油箱中剩余的油量不能少于4公升求出s的取值范围.
【详解】
解:∵每行驶百千米耗油8升,
∴行驶s百公里共耗油8s,
∴余油量为Q=52﹣8s;
∵油箱中剩余的油量不能少于4公升,
∴52﹣8s≥4,解得s≤6,
∴s的取值范围为0≤s≤6.
故答案为:Q=52﹣8s(0≤s≤6).
本题考查一次函数在是实际生活中的应用,在求解函数自变量范围的时候,一定要考虑变量在本题中的实际意义.
22、20%
【解析】
设平均每次降价的百分率为x,根据该商品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【详解】
解:设平均每次降价的百分率为x,
依题意,得:25(1﹣x)2=16,
解得:x1=0.2=20%,x2=1.8(不合题意,舍去).
故答案为:20%.
本题主要考查一元二次方程的应用,读懂题意列出方程是解题的关键.
23、y=﹣x﹣1
【解析】
确定M、N点的坐标,再利用待定系数法求直线MN的关系式即可.
【详解】
由题意得:OM=2,∴M(-2,0)
∵矩形OMAN的面积为6,
∴ON=6÷2=1,
∵点A在第三象限,
∴N(0,-1)
设直线MN的关系式为y=kx+b,(k≠0)将M、N的坐标代入得:
b=-1,-2k+b=0,
解得:k=-,b=-1,
∴直线MN的关系式为:y=-x-1
故答案为:y=-x-1.
考查待定系数法求一次函数的关系式,确定点的坐标是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)B(0,6),A(﹣8,0).(2)1;(3)①3个;②P1(﹣1,6),P2(﹣11,﹣6),P3(1,6).
【解析】
(1)利用待定系数法解决问题即可.
(2)由翻折不变性可知,OC=CD,OB=BD=6,∠CDB=∠BOC=90°,推出AD=AB-BD=4,设CD=OC=x,在Rt△ADC中,根据AD2+CD2=AC2,构建方程即可解决问题.
(3)①根据平行四边形的定义画出图形即可判断.
②利用平行四边形的性质求解即可解决问题.
【详解】
(1)对于直线y=x+6,令x=0,得到y=6,
∴B(0,6),
令y=0,得到x=﹣8,
∴A(﹣8,0).
(2)∵A(﹣8,0).B(0,6),
∴OA=8,OB=6,∵∠AOB=90°,
∴AB===10,
由翻折不变性可知,OC=CD,OB=BD=6,∠CDB=∠BOC=90°,
∴AD=AB﹣BD=4,设CD=OC=x,
在Rt△ADC中,∵∠ADC=90°,
∴AD2+CD2=AC2,
∴42+x2=(8﹣x)2,
解得x=3,
∴OC=3,AC=OA﹣OC=8﹣3=1.
(3)①符合条件的点P有3个如图所示.
②∵A(﹣8,0),C(﹣3,0),B(0,6),
可得P1(﹣1,6),P2(﹣11,﹣6),P3(1,6).
本题属于一次函数综合题,考查了待定系数法,解直角三角形,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题
25、详见解析
【解析】
首先根据已知易证,可得是中点,再根据三角形的中位线定理可得.
【详解】
证明:∵,平分,
∴,,
又∵,
∴(ASA),
∴.
又∵,
∴.
此题主要考查了三角形中位线定理,以及全等三角形的判定和性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
26、(1)证明见解析;(2)证明见解析.
【解析】
(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;
(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180× =45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.
【详解】
(1)在△ADE与△CDE中,
,
∴△ADE≌△CDE,
∴∠ADE=∠CDE,
∵AD∥BC,
∴∠ADE=∠CBD,
∴∠CDE=∠CBD,
∴BC=CD,
∵AD=CD,
∴BC=AD,
∴四边形ABCD为平行四边形,
∵AD=CD,
∴四边形ABCD是菱形;
(2)∵BE=BC,
∴∠BCE=∠BEC,
∵∠CBE:∠BCE=2:3,
∴∠CBE=180× =45°,
∵四边形ABCD是菱形,
∴∠ABE=45°,
∴∠ABC=90°,
∴四边形ABCD是正方形.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份河南省漯河市名校2024年九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖南省长沙市名校九上数学开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山西省吕梁市名校数学九上开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。