吉林省吉林市2024-2025学年数学九上开学考试模拟试题【含答案】
展开这是一份吉林省吉林市2024-2025学年数学九上开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)反比例函数 y=的图象如图所示,点 M 是该函数图象上的一点,MN 垂直于 x 轴,垂足为 N,若 S△MON=,则 k 的值为( )
A.B.C.3D.-3
2、(4分)如果不等式(a+1)x<a+1的解集为x>1,那么a的取值范围是( )
A.a<1B.a<﹣1C.a>1D.a>﹣1
3、(4分)若解分式方程 产生增根,则m=( )
A.1B.0C.﹣4D.﹣5
4、(4分)使代数式有意义的x的取值范围是( )
A.B.C.D.
5、(4分)下列各组数中是勾股数的为( )
A.1、2、3B.4、5、6C.3、4、5D.7、8、9
6、(4分)将抛物线 y=x2向右平移 2 个单位长度,再向上平移 3 个单位长度后,得到的抛物线的解析式为( )
A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3
C.y=(x+2)2+3D.y=(x+2)2﹣3
7、(4分)下列说法错误的是( )
A.必然事件发生的概率为1B.不确定事件发生的概率为0.5
C.不可能事件发生的概率为0D.随机事件发生的概率介于0和1之间
8、(4分)如图,平行四边形ABCD中,AE平分∠BAD交边BC于点E,已知AD=7,CE=3,则AB的长是( )
A.7B.3C.3.5D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是_____.
10、(4分)如图所示,在菱形中,对角线与相交于点.OE⊥AB,垂足为,若,则的大小为____________.
11、(4分)函数中,自变量的取值范围是_____.
12、(4分)若,则等于______.
13、(4分)一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,一次函数的图象经过点.
(1)当时,且正比例函数的图象经过点.
①若,求的取值范围;
②若一次函数的图象为,且不能围成三角形,求的值;
(2)若直线与轴交于点,且,求的数量关系.
15、(8分)已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,
(1)求证:△BCE≌△ACD;
(2)求证:CF=CH;
(3)判断△CFH的形状并说明理由.
16、(8分)解方程
17、(10分)计算:( +)×
18、(10分)求证:取任何实数时,关于的方程总有实数根.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)方程的解为_________.
20、(4分)一组正整数2,4,5,从小到大排列,已知这组数据的中位数和平均数相等,那么的值是______.
21、(4分)菱形ABCD的两条对角线长分别为6和4,则菱形ABCD的面积是_____.
22、(4分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为_____.
23、(4分)菱形两对角线长分别为24和10,则这个菱形的面积是________,菱形的高为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(1);(2)+(3﹣2)(3+2)
25、(10分)如图,中任意一点经平移后对应点为,将作同样的平移得到,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:
(1)画出,并写出点D、E、F的坐标..
(2)若与关于原点O成中心对称,直接写出点D的对应点的坐标.
26、(12分)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:
(1)DE=BF;
(2)四边形DEBF是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积即可解答.
【详解】
解:∵S△MON=,
∴|k|=,
∴
∵图象过二、四象限,
∴反比例函数的系数为k=-1.
故选:D.
本题主要考查反比例函数的比例系数k的几何意义.反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.
2、B
【解析】
(a+1)x<a+1,
当a+1<0时x>1,
所以a+1<0,解得a<-1,
故选B.
【点睛】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.
3、D
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出m的值.
【详解】
解:方程两边都乘,得
,
原方程增根为,
把代入整式方程,得,
故选D.
本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
4、A
【解析】
根据二次根式被开方数为非负数可得关于x的不等式,解不等式即可得.
【详解】
使代数式有意义,则x-10≥0,
解得:x≥10,
故选A.
本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
5、C
【解析】
根据勾股定理的逆定理分别对各组数据进行检验即可.
【详解】
解:A.∵12+22=5≠32=9,∴不是勾股数,故A错误;
B.∵42+52=41≠62=36,∴不是勾股数,故B错误;
C.∵32+42=25=52=25,∴是勾股数,故C正确;
D.∵72+82=113≠92=81,∴不是勾股数,故D错误.
故选C.
本题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.
6、A
【解析】
直接根据平移规律,即可得到答案.
【详解】
解:将抛物线y=x2向右平移 2 个单位长度,再向上平移 3 个单位长度,
得:y=(x﹣2)2+3;
故选项:A.
此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.
7、B
【解析】
A选项:∵必然事件发生的概率为1,故本选项正确;
B选项:∵不确定事件发生的概率介于1和0之间,故本选项错误;
C选项:∵不可能事件发生的概率为0,故本选项正确;
D选项:∵随机事件发生的概率介于0和1之间,故本选项正确;
故选B.
8、D
【解析】
先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而由EC的长求出BE即可解答.
【详解】
解:∵AE平分∠BAD交BC边于点E,
∴∠BAE=∠EAD,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=7,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∵EC=3,
∴BE=BC-EC=7-3=4,
∴AB=4,
故选D.
本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>1.
【解析】
试题解析:∵一次函数与交于点,
∴当时,由图可得:.
故答案为.
10、65°
【解析】
先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.
【详解】
在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO∠BAD50°=25°.
∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.
故答案为65°.
本题考查了菱形的邻角互补,每一条对角线平分一组对角的性质,直角三角形两锐角互余的性质,熟练掌握性质是解题的关键.
11、
【解析】
根据被开方式是非负数列式求解即可.
【详解】
依题意,得,
解得:,
故答案为:.
本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
12、
【解析】
依据比例的基本性质,即可得到5a=7b,进而得出=.
【详解】
解:∵,
∴5a-5b=2b,
即5a=7b,
∴=,
故答案为:.
本题主要考查了分式的值,解决问题的关键是利用比例的基本性质进行化简变形.
13、x>-2
【解析】
试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.
考点:一次函数与一元一次不等式.
三、解答题(本大题共5个小题,共48分)
14、(1)①;②的值为或1或;(2).
【解析】
(1)用待定系数法求出B点坐标,再求得正比例函数解析式,①由函数值的大小关系列出x的不等式,便可求得x的取值范围;②当l3过l1与l2的交点和l3与l1或l2平行时,l1,l2,l3不能围成三角形,由此求出k3;
(2)根据题意求得k1=-2,则y1=-2x+4m,代入(n,0),即可得到m,n的数量关系.
【详解】
解:(1)依题意,得:,
图象经过点,
所以,,
解得:
所以,,
正比例函数的图象经过点,
所以,,解得:,
所以,,。
①若,则,
解得,;
②若,,不能围成三角形,则或,或经过与的交点,
∵为:,为,
解,解得,
∴交点,
代入得,,
解得,
∴的值为或1或;
(2)∵一次函数的图象经过点,
∴①
直线与轴交于点,
∴②
∴①×2+②得,,
∵,
∴,
∴一次函数为,
∵经过
∴,
∴.
本题考查了一次函数和一元一次不等式,一次函数的图象以及一次函数的性质,明确不能构成三角形的三种情况是解题的关键.
15、(1)证明见解析;(2)证明见解析;(3)△CFH是等边三角形,理由见解析.
【解析】
(1)利用等边三角形的性质得出条件,可证明:△BCE≌△ACD;
(2)利用△BCE≌△ACD得出∠CBF=∠CAH,再运用平角定义得出∠BCF=∠ACH进而得出△BCF≌△ACH因此CF=CH.
(3)由CF=CH和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH是等边三角形.
【详解】
解:(1)∵∠BCA=∠DCE=60°,
∴∠BCE=∠ACD.
又BC=AC、CE=CD,
∴△BCE≌△ACD.
(2)∵△BCE≌△ACD,
∴∠CBF=∠CAH.
∵∠ACB=∠DCE=60°,
∴∠ACH=60°.
∴∠BCF=∠ACH.
又BC=AC,
∴△BCF≌△ACH.
∴CF=CH.
(3)∵CF=CH,∠ACH=60°,
∴△CFH是等边三角形.
本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.
16、x=2
【解析】
方程两边同时乘以x-1,化为整式方程,解整式方程后进行检验即可得.
【详解】
解:两边同时乘以x-1,得
,
解得:,
检验:当x=2时,x-1≠0,
所以原分式方程的解是.
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
17、6+2.
【解析】
先化简二次根式,再利用乘法分配律计算可得.
【详解】
原式=(2+2)×
=6+2.
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.
18、见解析
【解析】
由a是二次项的系数,分a=0及两种情况分别确定方程的根的情况即可得到结论.
【详解】
当时,方程为,;
当,方程为一元二次方程,
,原方程有实数根.
综上所述,取任何值时,原方程都有实数根.
此题考查方程的根的情况,正确理解题意分情况解答是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
此题采用因式分解法最简单,解题时首先要观察,然后再选择解题方法.配方法与公式法适用于所用的一元二次方程,因式分解法虽有限制,却最简单.
【详解】
∵
∴
∴
∴
∴
故答案为:.
此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.
20、1
【解析】
根据这组数据的中位数和平均数相等,得出(4+5)÷2=(2+4+5+x)÷4,求出x的值即可.
【详解】
∵这组数据的中位数和平均数相等,
∴(4+5)÷2=(2+4+5+x)÷4,
解得:x=1.
故答案为:1.
此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是根据中位数和平均数相等列出方程.
21、1
【解析】
根据菱形的面积等于对角线积的一半,即可求得其面积.
【详解】
∵菱形ABCD的两条对角线长分别为6和4,
∴其面积为4×6=1.
故答案为:1.
此题考查了菱形的性质.注意熟记①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度).
22、(,0)
【解析】
【分析】根据一次函数解析式求出点A、点B的坐标,再由中点坐标公式求出点C、点D的坐标,根据对称的性质找出点D关于x轴的对称点D′的坐标,结合C、D′的坐标求出直线CD′的解析式,令y=0求出x的值,从而得到点P的坐标.
【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,
如图,
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4),
令y=x+4中y=0,则x+4=0,解得:x=-6,
∴点A的坐标为(-6,0),
∵点C、D分别为线段AB、OB的中点,
∴点C(-3,2),点D(0,2),
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-2),
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(-3,2),D′(0,-2),
∴有,解得:,
∴直线CD′的解析式为y=-x-2,
令y=0,则0=-x-2,解得:x=-,
∴点P的坐标为(-,0),
故答案为(-,0).
【点睛】本题考查了待定系数法、一次函数以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式,解决此类问题时找点的坐标,常利用待定系数法求出函数解析式.
23、110cm1,cm.
【解析】
试题分析:已知两对角线长分别为14cm和10cm,利用勾股定理可得到菱形的边长=13cm,根据菱形面积==两条对角线的乘积的一半可得菱形面积=×14×10=110cm1.又因菱形面积=底×高,即高=菱形面积÷底=cm.
考点:菱形的性质;勾股定理.
二、解答题(本大题共3个小题,共30分)
24、(1)﹣;(2)1.
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用二次根式的性质和平方差公式计算.
【详解】
解:(1)原式=1﹣9+
=﹣;
(2)原式=7+9﹣12
=1.
本题考查了二次根式的运算,正确掌握二次根式的性质是解题的关键.
25、(1)D(0,4),E(2,2),F(3,5),画图见解析;(2)(0,-4)
【解析】
(1)根据平面直角坐标系中点的坐标的平移规律求解可得;
(2)根据关于原点中心对称的规律“横纵坐标都互为相反数”即可求得.
【详解】
解:(1)如图,△DEF即为所求,
点D的坐标是,即(0,4);
点E的坐标是,即(2,2);
点F的坐标为,即(3,5);
(2)点D(0,4)关于原点中心对称的的坐标为(0,-4).
本题主要考查了平移变换以及旋转变换,正确得出对应点位置是解题关键.
26、详见解析.
【解析】
(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AD∥CB,AD=CB,
∴∠DAE=∠BCF,
在△ADE和△CBF中,
∴△ADE≌△CBF,
∴DE=BF.
(2)由(1),可得∴△ADE≌△CBF,
∴∠ADE=∠CBF,
∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,
∴∠DEF=∠BFE,
∴DE∥BF,
又∵DE=BF,
∴四边形DEBF是平行四边形.
考点:平行四边形的判定与性质;全等三角形的判定与性质.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份吉林省2024-2025学年数学九上开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届吉林省吉林市舒兰市九上数学开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年吉林省吉林市吉化九中学数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。