终身会员
搜索
    上传资料 赚现金

    吉林省实验中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】

    立即下载
    加入资料篮
    吉林省实验中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】第1页
    吉林省实验中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】第2页
    吉林省实验中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    吉林省实验中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】

    展开

    这是一份吉林省实验中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,正方形ABCD,点E、F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG的长为( )
    A.B.5C.D.
    2、(4分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
    则这些运动员成绩的中位数、众数分别为
    A.、B.、C.、D.、
    3、(4分)已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
    A.1B.3C.4D.5
    4、(4分)醴陵市“师生诗词大赛”成绩结果统计如表,成绩在91--100分的为优秀,则优秀的频率是( )
    A.0.2B.0.25C.0.3D.0.35
    5、(4分)下列说法中,其中不正确的有( )
    ①任何数都有算术平方根;
    ②一个数的算术平方根一定是正数;
    ③a2的算术平方根是a;
    ④算术平方根不可能是负数.
    A.0个B.1个C.2个D.3个
    6、(4分)用配方法解方程x2+2x﹣1=0时,配方结果正确的是( )
    A.(x+2)2=2B.(x+1)2=2C.(x+2)2=3D.(x+1)2=3
    7、(4分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )
    A.AF=AEB.△ABE≌△AGFC.EF=D.AF=EF
    8、(4分)已知一个直角三角形的两边长分别为3和4,则第三边长是( )
    A.5B.25C.D.5或
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.
    10、(4分)计算的结果等于__________.
    11、(4分)在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.
    12、(4分)如图,在中,,,点D在边上,若以、为边,以为对角线,作,则对角线的最小值为_______.
    13、(4分)已知关于的分式方程的解为负数,则的取值范围是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,点、分别在矩形的边、上,把这个矩形沿折叠后,点恰好落在边上的点处,且.
    (1)求证:;
    (2)连接、,试证明:.
    15、(8分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
    设(其中均为整数),则有.
    ∴.这样小明就找到了一种把部分的式子化为平方式的方法.
    请你仿照小明的方法探索并解决下列问题:
    当均为正整数时,若,用含m、n的式子分别表示,得= ,= ;
    (2)利用所探索的结论,找一组正整数,填空: + =( + )2;
    (3)若,且均为正整数,求的值.
    16、(8分)解不等式组,并将解集在数轴上表示出来.
    17、(10分)某校学生在“蓝天下的至爱”帮困活动中,纷纷拿零花钱,参加募捐活动.甲班学生共募捐840元,乙班学生共募捐1000元,乙班学生的数比甲班学生的人均捐款数多5元,且人数比甲班少2名,求甲班和乙班学生的人数.
    18、(10分)随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者接受并购买新能源汽车。我市某品牌新能源汽车经销商1月至3月份统计,该品牌汽车1月份销售150辆,3月份销售216辆.
    (1)求该品牌新能源汽车销售量的月均增长率;
    (2)若该品牌新能源汽车的进价为52000元,售价为58000元,则该经销商1月至3月份共盈利多少元?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)对于实数,我们用符号表示两数中较小的数,如.因此, ________;若,则________.
    20、(4分)如图,在菱形中,,过的中点作,垂足为点,与的延长线相交于点,则_______,_______.
    21、(4分)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是___.
    22、(4分)在平行四边形ABCD中,,则的度数是______°.
    23、(4分)分式方程有增根,则m=_____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,四边形ABCD是边长为的正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
    (1)求证:△AMB≌△ENB;
    (2)当M点在何处时,AM+BM+CM的值最小,说明理由;并求出AM、BM、CM的值.
    25、(10分)如图,矩形中,,将矩形绕点旋转得到矩形,使点的对应点落在上,交于点,在上取点,使.
    (1)求证:;
    (2)求的度数;
    (3)若,求的长.
    26、(12分)计算
    (1); (2).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    如图,连接BE、BF.首先利用勾股定理求出EF,再根据S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,列出方程即可解决问题.
    【详解】
    如图,连接BE、BF.
    ∵四边形ABCD是正方形,
    ∴AB=BC=CD=AD=5,
    ∵AE=1,CF=2,
    ∴DE=4,DF=3,
    ∴EF==5,
    ∵S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,
    ∴•5•BG=25-•5•1-•5•2-•3•4,
    ∴BG=,
    故选C.
    本题考查正方形的性质、勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,学会利用分割法求三角形面积,学会构建方程解决问题,属于中考常考题型.
    2、C
    【解析】
    根据中位数和众数的概念进行求解.
    【详解】
    解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
    众数为:1.75;
    中位数为:1.1.
    故选C.
    本题考查1.中位数;2.众数,理解概念是解题关键.
    3、D
    【解析】
    根据二次函数的图象与性质即可求出答案.
    【详解】
    解:①由抛物线的对称轴可知:,
    ∴,
    由抛物线与轴的交点可知:,
    ∴,
    ∴,故①正确;
    ②抛物线与轴只有一个交点,
    ∴,
    ∴,故②正确;
    ③令,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,故③正确;
    ④由图象可知:令,
    即的解为,
    ∴的根为,故④正确;
    ⑤∵,
    ∴,故⑤正确;
    故选D.
    考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
    4、A
    【解析】
    根据优秀人数为人,而数据总数为个,由频率公式可得答案.
    【详解】
    解:由题意得:优秀的频率是
    故选A.
    本题考查的是频数与频率,掌握“频率等于频数除以数据总数”是解题的关键.
    5、D
    【解析】
    ①②③④分别根据平方根和算术平方根的概念即可判断.
    【详解】
    解:根据平方根概念可知:
    ①负数没有算术平方根,故错误;
    ②反例:0的算术平方根是0,故错误;
    ③当a<0时,a2的算术平方根是﹣a,故错误;
    ④算术平方根不可能是负数,故正确.
    所以不正确的有①②③.
    故选D.
    考核知识点:算术平方根.
    6、B
    【解析】
    把常数项移到方程右边,再把方程两边加上1,然后把方程作边写成完全平方形式即可.
    【详解】
    解:∵x1+1x﹣1=0,
    ∴x1+1x+1=1,
    ∴(x+1)1=1.
    故选:B.
    本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
    7、D
    【解析】
    试题分析:∵AD∥BC,∴∠AFE=∠FEC,∵∠AEF=∠FEC,∴∠AFE=∠AEF,∴AF=AE,∴选项A正确;
    ∵ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵AG=DC,∠G=∠C,∴∠B=∠G=90°,AB=AG,∵AE=AF,∴△ABE≌△AGF,∴选项B正确;
    设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,,即,解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=,∴选项C正确;
    由已知条件无法确定AF和EF的关系,故选D.
    考点:翻折变换(折叠问题).
    8、D
    【解析】
    分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.
    【详解】
    解:
    分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是;
    ②3和4都是直角边,由勾股定理得:第三边长是=5;
    即第三边长是5或,
    故选D.
    本题考查了对勾股定理的应用,注意:在直角三角形中的两条直角边a、b的平方和等于斜边c的平方.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4
    【解析】
    根据对角线互相垂直的四边形的面积等于对角线乘积的一半.
    【详解】
    解:如图,∵AC平分∠BAD,
    ∴∠BAE=∠DAE,
    在△BAE和△DAE中
    ∴△BAE≌△DAE,
    ∴∠BEA=∠DEA,
    ∵∠BEA+∠DEA=180º,
    ∴∠BEA=∠DEA=90º,
    ∴DB⊥AC,
    ∴S四边形ABCD=AC×BD,
    ∵AC=8,S四边形ABCD=16,
    ∴BD=4.
    故答案为:4.
    本题考查了对角线互相垂直的四边形的面积.
    10、1
    【解析】
    分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.
    详解:原式=()2-()2
    =6-1
    =1,
    故答案为:1.
    点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.
    11、2
    【解析】
    根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长.
    【详解】
    作点E′和E关于BD对称.则连接AE′交BD于点P,
    ∵四边形ABCD是菱形,AB=4,E为AD中点,
    ∴点E′是CD的中点,
    ∴DE′=DC=×4=2,AE′⊥DC,
    ∴AE′=.
    故答案为2.
    此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键.
    12、1
    【解析】
    由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值,由三角形中位线定理求出OD,即可得出DE的最小值.
    【详解】
    解:∵,,
    根据勾股定理得,
    ∵四边形是平行四边形,

    ∴当取最小值时,线段最短,即时最短,
    是的中位线,


    故答案为:1.
    本题考查了平行四边形的性质,勾股定理以及垂线段最短,此题难度适中,注意掌握数形结合思想的应用.
    13、且.
    【解析】
    试题分析:分式方程去分母得:.
    ∵分式方程解为负数,∴.
    由得和
    ∴的取值范围是且.
    考点:1.分式方程的解;2.分式有意义的条件;3.解不等式;4.分类思想的应用.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)见解析;(2)见解析.
    【解析】
    (1)由折叠得到D=∠FGH=90°,∠C=∠H=90°,EC=EH,由矩形得出边平行,内角为直角,将问题转化到△EGH中,由30°所对的直角边等于斜边的一半,利用等量代换可得结论;
    (2)由轴对称的性质,对称轴垂直平分对应点所连接的线段,垂直于同一直线的两条直线互相平行得出结论.
    【详解】
    证明:
    (1)由折叠知:
    在矩形中,
    在中,

    ,即
    (2)连接、
    由折叠知:点和、点和点都关于直线成轴对称
    考查矩形的性质、轴对称的性质,直角三角形的性质等知识,合理的将问题转化到一个含有30°的直角三角形是解决问题的关键.
    15、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.
    【解析】
    (1)∵,
    ∴,
    ∴a=m2+3n2,b=2mn.
    故答案为m2+3n2,2mn.
    (2)设m=1,n=2,∴a=m2+3n2=1,b=2mn=2.
    故答案为1,2,1,2(答案不唯一).
    (3)由题意,得a=m2+3n2,b=2mn.
    ∵2=2mn,且m、n为正整数,
    ∴m=2,n=1或m=1,n=2,
    ∴a=22+3×12=7,或a=12+3×22=1.
    16、,数轴表示见解析
    【解析】
    分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
    【详解】
    解:由①去括号、移项、合并同类项,得,
    解得;
    由②去分母、移项、合并同类项,得
    解得
    所以不等式组的解集为
    不等式组的解集在数轴上表示为:
    本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.
    17、甲班学生的人数为42名,乙班学生的人数为40名.
    【解析】
    设乙班学生的人数为名,则甲班学生的人数为名,由乙班学生的数比甲班学生的人均捐款数多1元可得等量关系:乙班平均每人捐款金额-甲班平均每人捐款金额=1.
    【详解】
    解:设乙班学生的人数为名,则甲班学生的人数为名.
    根据题意,得.
    整理,得.
    解得,.
    经检验:,都是原方程的根,但不符合题意,舍去.
    答:甲班学生的人数为42名,乙班学生的人数为40名.
    本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    18、(1)该品牌新能源汽车销售量的月均增长率为;(2)盈利3276000元.
    【解析】
    (1)设该品牌电动自行车销售量的月均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.
    (2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.
    【详解】
    (1)设该品牌新能源汽车销售量的月均增长率x,根据题意列方程
    解得,(舍去)
    (2)
    答:(1)该品牌新能源汽车销售量的月均增长率为;(2)共盈利3276000元.
    此题考查一元二次方程的应用,解题关键在于根据题意列出方程.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 2或-1.
    【解析】
    ①∵--,
    ∴min{-,-}=-;
    ②∵min{(x−1)2,x2}=1,
    ∴当x>0.5时,(x−1)2=1,
    ∴x−1=±1,
    ∴x−1=1,x−1=−1,
    解得:x1=2,x2=0(不合题意,舍去),
    当x⩽0.5时,x2=1,
    解得:x1=1(不合题意,舍去),x2=−1,
    20、1
    【解析】
    由菱形的性质可得AB=AD=CD=4,AB∥CD,由“ASA”可证△AEF≌△DEH,可得AF=HD=1,由三角形面积公式可求△CEF的面积.
    【详解】
    ∵四边形是菱形,
    ∴.
    ∵点是的中点,
    ∴.
    ∵,
    ∴,
    ∴.
    ∵,
    ∴,且,
    ∴,
    ∴,
    ∴.
    ∴.
    故答案为:1,.
    此题考查菱形的性质,全等三角形的判定和性质,直角三角形的性质,证明AF=HD=1是解题的关键.
    21、7
    【解析】
    根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.
    【详解】
    ∵矩形ABCD中,G是CD的中点,AB=8,
    ∴CG=DG=×8=4,
    在△DEG和△CFG中,

    ∴△DEG≌△CFG(ASA),
    ∴DE=CF,EG=FG,
    设DE=x,
    则BF=BC+CF=AD+CF=4+x+x=4+2x,
    在Rt△DEG中,EG=,
    ∴EF=,
    ∵FH垂直平分BE,
    ∴BF=EF,
    ∴4+2x=,
    解得x=3,
    ∴AD=AE+DE=4+3=7,
    ∴BC=AD=7.
    故答案为:7.
    此题考查线段垂直平分线的性质、勾股定理、全等三角形的判定与性质,解题关键在于综合运用勾股定理、全等三角形的性质解答即可.
    22、100°
    【解析】
    如图所示:
    ∵四边形ABCD是平行四边形,
    ∴∠A=∠C,∠A+∠B=180°,
    ∵∠A+∠C=160°,
    ∴∠A=∠C=80°,
    ∴∠B的度数是:100°.
    故答案是:100°.
    23、1
    【解析】
    分式方程去分母得:x+x﹣1=m, 根据分式方程有增根得到x﹣1=0,即x=1,
    将x=1代入整式方程得:1+1﹣1=m,
    则m=1,
    故答案为1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)M点位于BD与CE的交点时,理由见解析;,
    【解析】
    (1)由旋转的性质可知:BN=BM,BA=BE,然后再证明∠NBE=∠MBA,最后依据SAS证明△AMB≌△ENB即可;
    (2)连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,过点E作EF⊥BC,垂足为F,先证明∠EBF=30°,从而可求得EF,BC的长,由(1)可知EN=AM,然后证明△BNM为等边三角形,从而可得到BM=MN,则AM+BM+MC=EN+NM+MC≤EC,最后,依据勾股定理求得EC的长即可.
    【详解】
    解:(1)由旋转的性质可知:BN=BM,BA=BE.
    ∵△BAE为等边三角形,
    ∴∠EBA=60°.
    又∵∠MBN=60°,
    ∴∠NBE=∠MBA.
    在:△AMB和△ENB中,BN=BM,∠NBE=∠MBA,BA=BE,
    ∴△AMB≌△ENB.
    (2)如图所示:连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,过点E作EF⊥BC,垂足为F.
    ∵△ABE为等边三角形,ABCD为正方形,
    ∴∠EBA=60°,∠ABC=90°,
    ∴∠EBC=150°.
    ∴∠EBF=30°.


    由(1)可知:△AMB≌△ENB,
    ∴EN=AM.
    又∵BN=BM,∠NBM=60°,
    ∴△BNM为等边三角形.
    ∴BM=MN.
    ∴AM+BM+MC=EN+NM+MC≥EC.
    ∴AM+BM+MC的最小值
    =EC
    过点M作MG⊥BC,垂足为G,设BG=MG=x,则NB=x,
    EN=AM=MC

    ∴x=

    本题主要考查的是主要考查的是旋转的性质、正方形的性质、全等三角形的性质和判定,找出AM+BM+MC取得最小值的条件是解题的关键.
    25、(1)见解析;(2)15°;(3)2+2.
    【解析】
    (1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由折叠的性质得到一对角相等,利用等角对等边即可得证;
    (2)由(1)得到△ABB′为等边三角形,利用矩形的性质及等边三角形的内角为60°,即可求出所求角度数;
    (3)连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,分别利用三角函数定义求出MF与AM,根据AM=BM,即BM+MF=BF即可求出.
    【详解】
    (1)证明:∵在Rt△ABC中,AC=2AB,
    ∴∠ACB=∠AC′B′=30°,∠BAC=60°,
    由旋转可得:AB′=AB,∠B′AC′=∠BAC=60°,
    ∴∠EAC′=∠AC′B′=30°,

    ∴AE=C′E;
    (2)解:由(1)得到△ABB′为等边三角形,
    ∴∠AB′B=60°,即∠BB'F=∠AB'B+∠AB'F=150°,
    ∵BB'=B'F,
    ∴∠FBB′=∠B'FB=15°;
    (3)解:连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,
    ∴∠AFB′=45°,∠BB′F=150°,
    ∵BB′=B′F,
    ∴∠B′FB=∠B′BF=15°,
    ∴∠AFM=30°,∠ABF=45°,
    在Rt△AMF中,AM=BM=AB•cs∠ABM=2=2,
    在Rt△AMF中,MF=AM=2,
    则BF=2+2.
    此题参考四边形综合题,旋转的性质,矩形的性质,锐角三角函数定义,等边三角形、直角三角形的性质,熟练掌握旋转的性质是解题的关键.
    26、(1);(2).
    【解析】
    (1)先根据二次根式的性质进行化简,再去括号进行运算,即可得到答案;
    (2)先根据二次根式的性质进行化简,进行运算,即可得到答案.
    【详解】
    (1)
    =
    =
    =2
    (2)
    =
    =
    本题考查二次根式的混合运算,解题的关键是先化简再进行计算.
    题号





    总分
    得分
    成绩
    人数
    2
    3
    2
    3
    4
    1
    分数段
    61--70
    71--80
    81--90
    91--100
    人数(人)
    2
    8
    6
    4

    相关试卷

    吉林省农安县新阳中学2024-2025学年九上数学开学学业水平测试试题【含答案】:

    这是一份吉林省农安县新阳中学2024-2025学年九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北省襄阳市徐寨中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】:

    这是一份湖北省襄阳市徐寨中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省许昌市实验中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】:

    这是一份河南省许昌市实验中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map