吉林省松原市第一中学2024年九年级数学第一学期开学统考试题【含答案】
展开
这是一份吉林省松原市第一中学2024年九年级数学第一学期开学统考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于( )
A.135°B.180°C.225°D.270°
2、(4分)一个多边形的内角和与外角和相等,则这个多边形是( )
A.四边形B.五边形C.六边形D.八边形
3、(4分)若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )
A.0B.2.5C.3 D.5
4、(4分)如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于( )
A.60°B.65°C.75°D.80°
5、(4分)下列事件中,属于随机事件的是( )
A.抛出的篮球往下落B.在只有白球的袋子里摸出一个红球
C.购买张彩票,中一等奖D.地球绕太阳公转
6、(4分)关于函数y=2x,下列说法错误的是( )
A.它是正比例函数B.图象经过(1,2)
C.图象经过一、三象限D.当x>0,y<0
7、(4分)方程有( )
A.两个不相等的实数根B.两个相等的实数根C.无实数根D.无法确定
8、(4分)如图,四边形ABCD是矩形,连接BD,,延长BC到E使CE=BD,连接AE,则的度数为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=kx+b的图象如图所示,若点A(3,m)在图象上,则m的值是__________.
10、(4分)化简: =_________.
11、(4分)如图,在平面直角坐标系xy中,矩形ABCD的边AB在x轴上,AO=2,BO=3,BC=4.将正方形沿箭头方向推,使点D落在y轴正半轴上点D’处,则点C的对应点C’的坐标为____.
12、(4分)直角三角形的两边为3和4,则该三角形的第三边为__________.
13、(4分)如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6 cm,动点P,Q分别从A,C同时出发,P以1 cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=3,BC=4,求四边形OCED的周长.
15、(8分)解不等式组
16、(8分)如图,已知在中,分别是的中点,连结.
(1)求证:四边形是平行四边形;
(2)若,求四边形的周长.
17、(10分)根据下列条件分别确定函数y=kx+b的解析式:
(1)y与x成正比例,当x=5时,y=6;
(2)直线y=kx+b经过点(3,6)与点(2,-4).
18、(10分)已知:线段a,c.
求作:△ABC,使BC=a,AB=c,∠C=90°
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简的结果为___________
20、(4分)已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.
21、(4分)如图,点关于原点中心对称,且点在反比例函数的图象上,轴,连接,则的面积为______.
22、(4分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处若,则为______ .
23、(4分)已知直线(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2012= .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,点、、、是四边形各边的中点,、是对角线,求证:四边形是平行四边形.
25、(10分)在Rt△ABC中,∠C=90°,AC=6,BC=1.在CB上找一点E,使EB=EA(利用尺规作图,保留作图痕迹),并求出此时CE的长.
26、(12分)潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.
(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?
(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=90°,然后即可求出答案.
【详解】
在△ABC和△AEF中,
∴△ABC≌△AEF(SAS)
∴∠5=∠BCA
∴∠1+∠5=∠1+∠BCA=90°
在△ABD和△AEF中
∴△ABD≌△AEH(SAS)
∴∠4=∠BDA
∴∠2+∠4=∠2+∠BDA=90°
∵∠3=45°
∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°
故答案选C.
本题考查的是全等三角形的判定与性质,能够根据全等将所求角转化是解题的关键.
2、A
【解析】
多边形的内角和外角性质.
【分析】设此多边形是n边形,
∵多边形的外角和为360°,内角和为(n-2)180°,
∴(n-2)180=360,解得:n=1.
∴这个多边形是四边形.故选A.
3、C
【解析】
解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,
(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.
(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.
(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.
(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.
(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;
综上,可得:a=0、2.5或5,∴a不可能是1.
故选C.
本题考查中位数;算术平均数.
4、C
【解析】
连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.
【详解】
连接BD,
∵四边形ABCD为菱形,∠A=60°,
∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
∵P为AB的中点,
∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
∴∠PDC=90°,
∴由折叠的性质得到∠CDE=∠PDE=45°,
在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.
故选:C.
此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.
5、C
【解析】
随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.
【详解】
A. 抛出的篮球会落下是必然事件,故本选项错误;
B. 从装有白球的袋里摸出红球,是不可能事件,故本选项错误;
C.购买10张彩票,中一等奖是随机事件,故本选正确。
D. 地球绕太阳公转,是必然事件,故本选项错误;
故选:C.
本题考查随机事件,熟练掌握随机事件的定义是解题关键.
6、D
【解析】
根据正比例函数的图象与系数的关系解答,对于y=kx,当k>0时, y=kx的图象经过一、三象限;当k<0时, y=kx的图象经过二、四象限.
【详解】
关于函数y=2x,
A、它是正比例函数,说法正确,不合题意;
B、当x=1时,y=2,图象经过(1,2),说法正确,不合题意;
C、图象经过一、三象限,说法正确,不合题意;
D、当x>0时,y>0,说法错误,符合题意;
故选D.
此题考查了正比例函数的性质和,熟练掌握正比例函数的定义与性质是解题关键.
7、A
【解析】
根据根的差别式进行判断即可.
【详解】
解:∵a=1,b=3,c=2,
∴∆=
=1>0
∴ 这个方程有两个不相等的实数根.
故选:A.
本题考查了一元二次方程根的判别式,正确理解根的判别式是解题的关键.
8、A
【解析】
如图,连接AC.只要证明CE=CA,推出∠E=∠CAE,求出∠ACE即可解决问题.
【详解】
如图,连接AC.
∵四边形ABCD是矩形,∴AC=BD.
∵EC=BD,∴AC=CE,∴∠AEB=∠CAE,易证∠ACB=∠ADB=30°.
∵∠ACB=∠AEB+∠CAE,∴∠AEB=∠CAE=15°.
故选A.
本题考查了矩形的性质、等腰三角形的判定和性质,三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2.5
【解析】
先用待定系数法求出直线解析式,再将点A代入求解可得.
【详解】
解:将(-2,0)、(0,1)代入y=kx+b,得:,
解得:
∴y=x+1,
将点A(3,m)代入,得:
即
故答案为:2.5
本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.
10、
【解析】
根据根式的性质即可化简.
【详解】
解: =
本题考查了根式的化简,属于简单题,熟悉根式的性质是解题关键.
11、 (5,)
【解析】
由题知从正方形变换到平行四边形时,边的长度没变,从而求出即可
【详解】
由题知从正方形变换到平行四边形时,A D’=AD=BC=4,D’C’=AB=5,
∵AO=2,根据勾股定理,则O D’=,则D’( 0,),故C’的坐标为(5,)
熟练掌握图形变化中的不变边和勾股定理计算是解决本题的关键
12、5或
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】
解:设第三边为,
(1)若4是直角边,则第三边是斜边,由勾股定理得:
,所以;
(2)若4是斜边,则第三边为直角边,由勾股定理得:
,所以;
所以第三边的长为5或.
故答案为:5或.
本题考查勾股定理,解题的关键是熟练掌握勾股定理,并且分情况讨论.
13、2s
【解析】
设运动时间为t秒,则AP=t,QC=2t,根据四边形ABQP是平行四边形,得AP=BQ,则得方程t=6-2t即可求解.
【详解】
如图,设t秒后,四边形APQB为平行四边形,
则AP=t,QC=2t,BQ=6-2t,
∵AD∥BC,
∴AP∥BQ,
当AP=BQ时,四边形ABQP是平行四边形,
∴t=6-2t,
∴t=2,
当t=2时,AP=BQ=2<BC<AD,符合.
综上所述,2秒后四边形ABQP是平行四边形.
故答案为2s.
此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.
三、解答题(本大题共5个小题,共48分)
14、(1)菱形(2)1
【解析】
(1)根据DE∥AC,CE∥BD.得出四边形OCED是平行四边形,根据矩形的性质求得OC=OD,即可判定四边形OCED是菱形;(2)利用勾股定理求得AC的长,从而得出该菱形的边长,即可得出答案.
【详解】
(1)四边形OCED是菱形.
∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
在矩形ABCD中,OC=OD,
∴四边形OCED是菱形.
(2)∵四边形ABCD是矩形,
∴AC===5,
∴CO=OD=,
∴四边形OCED的周长=4×=1.
此题考查了菱形的判定与性质以及矩形的性质.根据连线的判定定理证得四边形CODE是菱形是解此题的关键.
15、1≤x<6.1
【解析】
分别解两个不等式,最后求公共部分即可.
【详解】
解:,
解不等式①得:x≥1,
解不等式②得:x<6.1,
所以不等式组的解集为:1≤x<6.1.
本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
16、 (1)见解析; (2)四边形的周长为12.
【解析】
(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;
(2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.
【详解】
(1)∵分别是的中点,
∴,
∴四边形是平行四边形.
(2)∵,是的中点,,
∴.
∴四边形是菱形.
∵,
∴四边形的周长为12.
本题考查了平行四边形的性质和判定,菱形的判定和性质,三角形的中位线的性质,熟练掌握平行四边形的性质是解题的关键.
17、(1);(2).
【解析】
(1)先根据正比例函数的定义可得,再利用待定系数法即可得;
(2)直接利用待定系数法即可得.
【详解】
(1)y与x成正比例
又当时,
解得
则;
(2)由题意,将点代入得:
解得
则.
本题考查了利用待定系数法求正比例函数和一次函数的解析,掌握待定系数法是解题关键.
18、详见解析
【解析】
过直线m上点C作直线n⊥m,再在m上截取CB=a,然后以B点为圆心,c为半径画弧交直线n于A,则△ABC满足条件.
【详解】
解:如图,△ABC为所作.
本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据二次根式的性质即可化简.
【详解】
依题意可知m<0,
∴=
此题主要考查二次根式的化简,解题的关键是熟知二次根式的性质.
20、
【解析】
由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.
【详解】
∵1160°÷180°=6…80°,
又∵100°+80°=180°,
∴这个内角度数为100°,
故答案为:100°.
本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.
21、1
【解析】
根据反比例函数的比例系数k的几何意义得到S△BOC=|k|=1,然后根据等底同高的三角形相等,得到S△AOC=S△BOC=1,即可求得△ABC的面积为1.
【详解】
解:∵BC⊥x轴,
∴S△BOC=|k|=1,
∵点A,B关于原点中心对称,
∴OA=OB,
∴S△AOC=S△BOC=1,
∴S△ABC=S△AOC+S△BOC=1,
故答案为:1.
本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
22、105°
【解析】
由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.
【详解】
∵AD∥BC,
∴∠ADB=∠DBG,
由折叠可得∠ADB=∠BDG,
∴∠DBG=∠BDG,
又∵∠1=∠BDG+∠DBG=50°,
∴∠ADB=∠BDG=25°,
又∵∠2=50°,
∴△ABD中,∠A=105°,
∴∠A′=∠A=105°,
故答案为:105°.
本题主要考查了翻折变换(折叠问题),平行四边形的性质,熟练掌握折叠性质和平行四边形额性质是解答本题的关键.
23、.
【解析】
令x=0,则;
令y=0,则,解得.
∴.
∴.
考点:探索规律题(图形的变化类),一次函数图象上点的坐标特征
二、解答题(本大题共3个小题,共30分)
24、见解析.
【解析】
根据三角形中位线定理得到,EF∥AC,,GH∥AC,得到EF=GH,EF∥GH,根据平行四边形的判定定理证明结论.
【详解】
证明:、分别是、的中点
是的中位线
同理:
四边形是平行四边形
本题考查的是三角形中位线定理、平行四边形的判定,掌握三角形中位线定理是解题的关键.
25、CE=
【解析】
作AB的垂直平分线交BC于E,则根据线段垂直平分线的性质得到EA=EB,设CE=x,则EA=EB=1-x,利用勾股定理得到62+x2=(1-x)2,然后解方程即可.
【详解】
如图,点E为所作;
设CE=x,则EA=EB=1-x,
在Rt△AEC中,∵AC2+CE2=AE2,
∴62+x2=(1-x)2,解得x=,
即CE=.
本题考查了作图,线段垂直平分线的性质,勾股定理,熟练掌握线段垂直平分线的性质以及勾股定理的内容是解题的关键.
26、(1)凤凰茶叶公司两次共购进这种凤凰茶叶600千克;(2)每千克茶叶的售价至少是200元.
【解析】
(1)设凤凰茶叶公司公司第一次购x千克茶叶,则第二次购进2x千克茶叶,根据单价=总价÷数量结合第二次购进茶叶每千克比第一次购进的贵10元,即可得出关于x的分式方程,解之并检验后即可得出结论;
(2)设每千克茶叶售价y元,根据利润=销售收入-成本,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
【详解】
(1)解设凤凰茶叶公司公司第一次购x千克茶叶,则第二次购进2x千克茶叶,
根据题意得:=10,解得:x=200,
经检验,x=200是原方程的根,且符合题意,
∴2x+x=2×200+200=600,
答:凤凰茶叶公司两次共购进这种凤凰茶叶600千克;
(2)设每千克茶叶售价y元,
根据题意得:600y﹣32000﹣68000≥(32000+68000)×20%,
解得:y≥200,
答:每千克茶叶的售价至少是200元.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量之间的关系,找出关于y的一元一次不等式.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份吉林省松原市前郭县2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份吉林省松原市宁江区第四中学2024-2025学年九年级数学第一学期开学考试模拟试题【含答案】,共17页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
这是一份吉林省松原市2024年数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。