吉林省长春市名校2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,则a的值是( )
A.﹣1B.2C.﹣1或3D.3
2、(4分)把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )
A.a=2,b=3B.a=-2,b=-3
C.a=-2,b=3D.a=2,b=-3
3、(4分)将分式中的,的值同时扩大为原来的2019倍,则变化后分式的值( )
A.扩大为原来的2019倍B.缩小为原来的
C.保持不变D.以上都不正确
4、(4分)下列二次根式①,②,③,④,能与合并的是( )
A.①和②B.②和③C.①和④D.③和④
5、(4分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是( )
A.B.C.D.
6、(4分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )
A.15°B.30°C.45°D.60°
7、(4分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )
A.极差是47B.众数是42
C.中位数是58D.每月阅读数量超过40的有4个月
8、(4分)四边形的对角线互相平分,要使它变为矩形,需要添加的条件是( )
A.AB=CDB.AC=BD
C.AB=BCD.AD=BC
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数 的图象上,则矩形ABCD的周长为________.
10、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则 OC=_____.
11、(4分)如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.
12、(4分)已知反比例函数的图象经过点,则b的值为______.
13、(4分)如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是_____
三、解答题(本大题共5个小题,共48分)
14、(12分)本题有许多画法,你不妨试一试:如图所示的是8的正方形网格,A、B两点均在格点上,现请你在下图中分别画出一个以A、B、C、D为顶点的菱形(可包含正方形),要求:(1)C、D也在格点上;(2)只能使用无刻度的直尺;(3)所画的三个菱形互不全等。
15、(8分)已知关于x的一次函数y=(3-m)x+m-5的图象经过第二、三、四象限,求实数m的取值范围.
16、(8分)为了让同学们了解自己的体育水平,八年级1班的体育老师对全班50名学生进行了一次体育模拟测试(得分均为整数).成绩满分为10分,1班的体育委员根据这次测试成绩制作了如下的统计图:
(1)根据统计图所给的信息填写下表:
(2)若女生队测试成绩的方差为1.76,请计算男生队测试成绩的方差.并说明在这次体育测试中,哪个队的测试成绩更整齐些?
17、(10分)水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.
(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?
(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?
18、(10分)2019年是我们伟大祖国建国70周年,各种欢庆用品在网上热销.某网店销售甲、乙两种纪念商品,甲种商品每件进价150元,可获利润40元;乙种商品每件进价100元,可获利润30元.由于这两种商品特别畅销,网店老板计划再购进两种商品共100件,其中乙种商品不超过36件.
(1)若购进这100件商品的费用不得超过13700元,求共有几种进货方案?
(2)在(1)的条件下,该网店在7•1建党节当天对甲种商品以每件优惠m(0<m<20)元的价格进行优惠促销活动,乙种商品价格不变,那么该网店应如何调整进货方案才能获得最大利润?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,AF是△ABC的高,点D.E分别在AB、AC上,且DE||BC,DE交AF于点G,AD=5,AB=15,AC=12,GF=6.求AE=____;
20、(4分)如图,在平面直角坐标系中,点在直线上.连结,将线段绕点顺时针旋转,点的对应点恰好落在直线上,则的值为_____.
21、(4分)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.
22、(4分)如图,正方形中,,点在边上,且.将沿对折至,延长交边于点.连结、.下列结论:①;②;③是正三角形;④的面积为1.其中正确的是______(填所有正确答案的序号).
23、(4分)如图,一张纸片的形状为直角三角形,其中,,,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为______cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)南开两江中学校初一年级在3月18日听了一堂“树的畅想”的景观设计课,随后在本年级学生中进行了活动收获度调查,采取随机抽样的调查方式进行网络问卷调查,问卷调查的结果分为“非常有收获”“比较有收获”“收获一般”“没有太大的收获”四个等级,分别记作A、B、C、D并根据调查结果绘制两幅不完整统计图:
(1)这次一共调查了_______名学生,并将条形统计图补充完整
(2)请在参与调查的这些学生中,随机抽取一名学生,求抽取到的学生对这次“树的畅想”的景观设计课活动收获度是“收获一般”或者“没有太大的收获”的概率
25、(10分)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.
26、(12分)某智能手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
已知A,B两款手机的进货和销售价格如下表:
(1)今年A款手机每部售价多少元?
(2)该店计划新进一批A款手机和B款手机共90部,且B款手机的进货数量不超过A款手机数量的两倍,应如何进货才能使这批手机获利最多?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据一元二次方程定义可得a-3≠0,|a-1|=2,再解即可.
【详解】
由题意得:a-3≠0,|a-1|=2,
解得:a=-1,
故选A.
此题主要考查了一元二次方程定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
2、B
【解析】
分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.
详解:(x+1)(x-3)
=x2-3x+x-3
=x2-2x-3
所以a=2,b=-3,
故选B.
点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
3、C
【解析】
将分式中的x,y的值同时扩大为原来的2019倍,则x、2x-4y的值都扩大为原来的2019倍,所以根据分式的基本性质可得,变化后分式的值保持不变.
【详解】
解:∵将分式中的x,y的值同时扩大为原来的2019倍,
则,
∴变化后分式的值保持不变.
故选:C.
此题主要考查了分式的基本性质,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
4、C
【解析】
先化简各个二次根式,根据只有同类二次根式才能合并即可得出结果.
【详解】
解:,, ,,其中、与是同类二次根式,能与合并;
故选:C.
本题考查了二次根式的化简和同类二次根式的概念,属于基础题,熟练掌握相关知识是解题的关键.
5、D
【解析】
试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.
考点:函数的图象.
6、A
【解析】
先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.
【详解】
∵等边三角形ABC中,AD⊥BC,
∴BD=CD,即:AD是BC的垂直平分线,
∵点E在AD上,
∴BE=CE,
∴∠EBC=∠ECB,
∵∠EBC=45°,
∴∠ECB=45°,
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠ACE=∠ACB-∠ECB=15°,
故选A.
此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.
7、C
【解析】
根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.
【详解】
A、极差为:83-28=55,故本选项错误;
B、∵58出现的次数最多,是2次,
∴众数为:58,故本选项错误;
C、中位数为:(58+58)÷2=58,故本选项正确;
D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;
故选C.
8、B
【解析】
四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理可得,只需添加条件是对角线相等.
【详解】
可添加AC=BD,理由如下:
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,
∴四边形ABCD是矩形.
故选:B.
考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
分析:根据矩形的性质、结合点A的坐标得到点D的横坐标为2,点B的纵坐标为1,根据反比例函数解析式求出点D的坐标,点B的坐标,根据矩形的周长公式计算即可.
详解:∵四边形ABCD是矩形,点A的坐标为(2,1),
∴点D的横坐标为2,点B的纵坐标为1,
当x=2时,y==3,
当y=1时,x=6,
则AD=3-1=2,AB=6-2=4,
则矩形ABCD的周长=2×(2+4)=1,
故答案为1.
点睛:本题考查的是反比例函数图象上点的坐标特征、矩形的性质,掌握反比例函数图象上点的坐标特征是解题的关键.
10、1
【解析】
解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,∠BAD=90°,∵∠ADB=30°,∴AC=BD=2AB=8,∴OC=AC=1.故答案为1.
点睛:此题考查了矩形的性质、含30°角的直角三角形的性质.熟练掌握矩形的性质,注意掌握数形结合思想的应用.
11、1
【解析】
画出图形,设菱形的边长为x,根据勾股定理求出周长即可.
【详解】
当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,
∴4x=1,
即菱形的最大周长为1cm.
故答案是:1.
解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.
12、-1
【解析】
将点的坐标代入反比例函数解析式即可解答.
【详解】
把点(-1,b)代入y=,得b==-1.
故答案是:-1.
考查了反比例函数图象上点的坐标特征.函数图象上所有点的坐标均满足该函数解析式.
13、x<﹣1.
【解析】
以交点为分界,结合图象写出不等式-2x>ax+3的解集即可.
【详解】
解:∵函数y1=-2x和y2=ax+3的图象相交于点A(-1,2),
∴不等式-2x>ax+3的解集为x<-1.
故答案为x<-1.
此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
直接利用菱形的定义得出符合题意的图形即可.
【详解】
解:由题知,再根据四边相等的四边形为菱形,作出其他边即可,如下图所示:
此题主要考查了应用设计与作图以及菱形的性质,正确掌握菱形的性质是解题关键.
15、3<m<1.
【解析】
根据一次函数的性质即可求出m的取值范围.
【详解】
∵一次函数的图象经过第二、三、四象限,
∴,
∴3<m<1.
本题考查一次函数,解题的关键是熟练运用一次函数的性质,本题属于基础题型.
16、(1)8;8;8;(2)女生测试成绩更整齐些
【解析】
(1)根据平均数、众数的定义求解即可;
(2)先计算男生队测试成绩的方差,然后根据方差越小越整齐解答.
【详解】
(1)男生的平均数:(5×1+6×3+7×5+8×7+9×4+10×5) ÷(1+3+5+7+4+5)=8分;
男生的众数:∵8分出现的次数最多,∴众数是8分;
女生的众数:∵8分出现的次数最多,∴众数是8分;
(2)[(5-8)2×1+(6-8)2×3+(7-8)2×5+(8-8)2×7+(9-8)2×4+(10-8)2×5]÷25=2,
∵1.76<2,
∴女生测试成绩更整齐些.
本题考查了平均数、众数、标准差的求法,平均数是指在一组数据中所有数据之和再除以数据的个数.解题的关键是掌握加权平均数和方差公式.
17、(1)6120元 (2)答应涨价为5元.
【解析】
【分析】(1)根据总毛利润=每千克能盈利18元×卖出的数量即可计算出结果;
(2)设涨价x元,则日销售量为500-20x,根据总毛利润=每千克能盈利×卖出的数量即可列方程求解.
【详解】(1)(500-8×20)×18=6120元,
答:每天的总毛利润是6120元;
(2) 设每千克涨元
,
,
,
,
(舍) ,
又由于顾客得到实惠,答应涨价为5元.
【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
18、(1)11(2)当时,甲服装74件,乙服装26件;当m=10时,哪一种都可以;当时,甲服装64件,乙服装36件.
【解析】
(1)设甲种纪念商品购进x件,则乙种纪念商品购进(100-x)件,然后根据购进这100件服装的费用不得超过13700元,列出不等式解答即可;
(2)首先求出总利润W的表达式,然后针对m的不同取值范围进行讨论,分别确定其进货方案.
【详解】
(1)设购进甲商品x件,则乙商品购进(100-x),则
,解得:64≤x≤74,
所以,有11种进货方案.
(2)设总利润为W元,则有,
即.
当,,W随x增大而增大,
∴当x=74时,W有最大值,即此时购进甲种服装74件,乙种服装26件;
当m=10时,按哪一种方案进货都可以;
当时,,W随x增大而减小,
∴x=64时,W有最大值,即此时购进甲种服装64件,乙种服装36件.
本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用x表示出利润是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
证明△ADE∽△ABC,利用相似三角形的对应边的比相等即可求解;
【详解】
∵DE∥BC,
∴△ADE∽△ABC,
∴ ,即 ,
解得AE=4;
故答案为:4
此题考查相似三角形的判定与性质,难度不大
20、2
【解析】
先把点A坐标代入直线y=2x+3,得出m的值,然后得出点B的坐标,再代入直线y=﹣x+b解答即可.
【详解】
解:把A(﹣1,m)代入直线y=2x+3,可得:m=﹣2+3=1,
因为线段OA绕点O顺时针旋转90°,所以点B的坐标为(1,1),
把点B代入直线y=﹣x+b,可得:1=﹣1+b,b=2,
故答案为:2
此题考查一次函数问题,关键是根据代入法解解析式进行分析.
21、120
【解析】
【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.
【详解】设原计划每天种树x棵,则实际每天种树2x棵,
依题可得:,
解得:x=120,
经检验x=120是原分式方程的根,
故答案为:120.
【点睛】本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题的关键.
22、①②④
【解析】
①根据折叠的性质可以得到∠B=∠AFG=1°,AB=AF,AG=AG,根据HL定理即可证明两三角形全等;
②不妨设BG=FG=x,(x>0),则CG=30-x,EG=10+x,在Rt△CEG中,利用勾股定理即可列方程求得;
③利用②得出的结果,结合折叠的性质求得答案即可;
④根据三角形的面积公式可得:S△FGC=S△EGC,即可求解.
【详解】
解:如图:
在正方形ABCD中,AD=AB,∠D=∠B=∠C=1°,
又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G
∴∠AFG=∠AFE=∠D=1°,AF=AD,
即有∠B=∠AFG=1°,AB=AF,AG=AG,
在直角△ABG和直角△AFG中,
AB=AF,AG=AG,
∴△ABG≌△AFG;正确.
∵AB=30,点E在边CD上,且CD=3DE,
∴DE=FE=10,CE=20,
不妨设BG=FG=x,(x>0),
则CG=30-x,EG=10+x,
在Rt△CEG中,(10+x)2=202+(30-x)2
解得x=15,于是BG=GC=15;正确.
∵BG=GF=CG,
∴△CFG是等腰三角形,
∵BG=AB,
∴∠AGB≠60°,
则∠FGC≠60°,
∴△CFG不是正三角形.错误.
∵,
∴,
∴S△FGC=S△EGC=××20×15=1.正确.
正确的结论有①②④.
故答案为:①②④.
本题考查了正方形的性质,以及图形的折叠的性质,三角形全等的证明,理解折叠的性质是关键.
23、3
【解析】
在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=6,DE=DC,∠AED=∠C=90°,所以BE=AB-AE=4,设CD=x,则BD=8-x,然后在Rt△BDE中利用勾股定理得到42+x2=(8-x)2,再解方程求出x即可.
【详解】
在Rt△ABC中,
∵AC=6,BC=8,
∴AB==10,
∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,
∴AE=AC=6,DE=DC,∠AED=∠C=90°,
∴BE=AB-AE=10-6=4,
设CD=x,则BD=8-x,
在Rt△BDE中,
∵BE2+DE2=BD2,
∴42+x2=(8-x)2,解得x=3,
即CD的长为3cm.
故答案为3
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
二、解答题(本大题共3个小题,共30分)
24、(1)50;条形图见详解;(2)0.3
【解析】
(1)根据统计图中的数据可以求得本次调查的学生数,计算出选择C的学生数,从而可以将统计图补充完整;
(2)根据统计图中的数据可以分别求得抽取到的学生对这次“树的畅想”的景观设计课活动收获度是“收获一般”或者“没有太大的收获”的概率.
【详解】
解:(1)由题意可得,
本次调查的学生是:15÷30%=50(名),
故答案为:50,
选择C的学生有:50-15-20-5=10,补全的条形统计图如下图所示;
(2)由题可知:
“收获一般”或者“没有太大的收获”的概率为:;
本题考查概率公式、全面调查与抽样调查、扇形统计图、条形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
25、证明见解析.
【解析】
利用SAS证明△AEB≌△CFD,再根据全等三角形的对应边相等即可得.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,
∴∠BAE=∠DCF,
在△AEB和△CFD中,,
∴△AEB≌△CFD(SAS),
∴BE=DF.
本题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握相关的性质是解题的关键.
26、(1)今年A款手机每部售价1600元;(2)当新进A款手机30部,B款手机60部时,这批手机获利最大.
【解析】
(1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,根据今年与去年卖出的数量相同列方程进行求解即可;
(2)设今年新进A款手机a部,则B款手机(90-a)部,获利y元,根据利润=售价-进价可得y与a的函数关系式,求得a的取值范围,再根据函数的性质即可求得最大值,进而确定出如何进货才能获得最多.
【详解】
(1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,
由题意,得,
解得:x=1600,
经检验,x=1600是原方程的根,
答:今年A款手机每部售价1600元;
(2)设今年新进A款手机a部,则B款手机(90-a)部,获利y元,
由题意,得y=(1600-1100)a+(2000-1400)(90-a)=-100a+54000,
∵B款手机的进货数量不超过A款手机数量的两倍,
∴90-2a≤2a,
∴a≥30,
∵y=-100a+54000,
-100<0,
∴y随着a的增大而减小,
∴a=30时,y有最大值,此时y=51000,
∴B款手机的数量为:90-30=60部,
答:当新进A款手机30部,B款手机60部时,这批手机获利最大.
本题考查了分式方程的应用,一次函数的应用,弄清题意,找准各量间的关系,正确列出分式方程以及函数解析式并灵活运用函数的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
平均数(分)
中位数(分)
众数(分)
男生
8
女生
8
8
A款手机
B款手机
进货价格(元)
1100
1400
销售价格(元)
今年的销售价格
2000
吉林省宁江区一中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份吉林省宁江区一中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省秦皇岛市名校2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份河北省秦皇岛市名校2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北京师范大附中2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份北京师范大附中2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。